Transient Random Walks on 2D-Oriented Lattices
Teoriâ veroâtnostej i ee primeneniâ, Tome 52 (2007) no. 4, pp. 815-826 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We study the asymptotic behavior of the simple random walk on oriented versions of $Z^2$. The considered lattices are not directed on the vertical axis but unidirectional on the horizontal one, with random orientations whose distributions are generated by a dynamical system. We find a sufficient condition on the smoothness of the generation for the transience of the simple random walk on almost every such oriented lattices, and as an illustration we provide a wide class of examples of inhomogeneous or correlated distributions of the orientations. For ergodic dynamical systems, we also prove a strong law of large numbers and, in the particular case of independent identically distributed orientations, we solve an open problem and prove a functional limit theorem in the space $\mathscr{D}([0,\infty[,R^2)$ of càdlàg functions, with an unconventional normalization.
Keywords: random walks, random environments, random sceneries, oriented graphs, dynamical systems, recurrence versus transience, limit theorems.
@article{TVP_2007_52_4_a12,
     author = {N. Guillotin-Plantard and A. Le Ny},
     title = {Transient {Random} {Walks} on {2D-Oriented} {Lattices}},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {815--826},
     year = {2007},
     volume = {52},
     number = {4},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TVP_2007_52_4_a12/}
}
TY  - JOUR
AU  - N. Guillotin-Plantard
AU  - A. Le Ny
TI  - Transient Random Walks on 2D-Oriented Lattices
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 2007
SP  - 815
EP  - 826
VL  - 52
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/TVP_2007_52_4_a12/
LA  - en
ID  - TVP_2007_52_4_a12
ER  - 
%0 Journal Article
%A N. Guillotin-Plantard
%A A. Le Ny
%T Transient Random Walks on 2D-Oriented Lattices
%J Teoriâ veroâtnostej i ee primeneniâ
%D 2007
%P 815-826
%V 52
%N 4
%U http://geodesic.mathdoc.fr/item/TVP_2007_52_4_a12/
%G en
%F TVP_2007_52_4_a12
N. Guillotin-Plantard; A. Le Ny. Transient Random Walks on 2D-Oriented Lattices. Teoriâ veroâtnostej i ee primeneniâ, Tome 52 (2007) no. 4, pp. 815-826. http://geodesic.mathdoc.fr/item/TVP_2007_52_4_a12/

[1] Berzhe P., Pomo I., Vidal K., Poryadok v khaose, Mir, M., 1991, 368 pp. | MR

[2] Campanino M., Pétritis D., “Random walks on randomly oriented lattices”, Markov Process. Related Fields, 9:3 (2003), 391–412 | MR | Zbl

[3] Campanino M., Pétritis D., “On the physical relevance of random walks: an example of random walks on randomly oriented lattice”, Random Walks and Geometry, ed. V. Kaimanovitch, de Gruyter, Berlin, 2004, 393–411 | MR | Zbl

[4] R. Fernández, Fröhlich J., Sokal A. D., Random Walks, Critical Phenomena, and Triviality in Quantum Field Theory, Springer-Verlag, Berlin, 1992, 444 pp. | MR

[5] Guillotin N., “Asymptotics of a dynamic random walk in a random scenery. I. Law of large numbers”, Ann. Inst. H. Poincaré, 36:2 (2000), 127–151 | DOI | MR | Zbl

[6] Guillotin N., “Asymptotics of a dynamic random walk in a random scenery. II. A functional limit theorem”, Markov Process. Related Fields, 5:2 (1999), 201–218 | MR | Zbl

[7] Hu H., “Decay of correlations for piecewise smooth maps with indifferent fixed points”, Ergodic Theory Dynam. Systems, 24:2 (2004), 495–524 | DOI | MR | Zbl

[8] Jiang M., “Sinai–Ruelle–Bowen measures for lattice dynamical systems”, J. Statist. Phys., 111:3–4 (2003), 863–902 | DOI | MR | Zbl

[9] Kakutani S., “Random ergodic theorems and Markoff processes with a stable distribution”, Proceedings of the Second Berkeley Symposium on Mathematical Statistics and Probability 1950, Univ. of California Press, Berkeley–Los Angeles, 1951, 247–261 | MR

[10] Keller G., Equilibrium States in Ergodic Theory, London Math. Soc. Stud. Texts, 42, Cambridge Univ., Cambridge, 1998, 178 pp. | MR | Zbl

[11] Liverani C., Saussol B., Vaienti S., “Conformal measure and decay of correlation for covering weighted systems”, Ergodic Theory Dynam. Systems, 18:6 (1998), 1399–1420 | DOI | MR | Zbl

[12] Kesten H., Spitzer F., “A limit theorem related to a new class of self similar processes”, Wahrscheinlichkeitstheor. Verw. Geb., 50:1 (1979), 5–25 | DOI | MR | Zbl

[13] Leroux P., “Coassociative grammar, periodic orbits, and quantum random walk over $Z^d$”, Int. J. Math. Math. Sci., 24 (2005), 3979–3996 | DOI | MR | Zbl

[14] Maes C., Redig F., Takens F., van Moffaert A., Verbitski E., “Intermittency and weakly Gibbs states”, Nonlinearity, 13:5 (2000), 1681–1698 | DOI | MR | Zbl

[15] Pianigiani G., “First return map and invariant measures”, Israel J. Math., 35:1–2 (1980), 32–48 | DOI | MR | Zbl

[16] Young L. S., “Recurrence times and rates of mixing”, Israel J. Math., 110 (1999), 153–188 | DOI | MR | Zbl