@article{TVP_2007_52_4_a10,
author = {K.-H. Indlekofer and O. I. Klesov},
title = {Strong {Law} of {Large} {Numbers} for {Multiple} {Sums} {Whose} {Indices} {Belong} to a {Sector} with {Function} {Boundaries}},
journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
pages = {803--810},
year = {2007},
volume = {52},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TVP_2007_52_4_a10/}
}
TY - JOUR AU - K.-H. Indlekofer AU - O. I. Klesov TI - Strong Law of Large Numbers for Multiple Sums Whose Indices Belong to a Sector with Function Boundaries JO - Teoriâ veroâtnostej i ee primeneniâ PY - 2007 SP - 803 EP - 810 VL - 52 IS - 4 UR - http://geodesic.mathdoc.fr/item/TVP_2007_52_4_a10/ LA - ru ID - TVP_2007_52_4_a10 ER -
%0 Journal Article %A K.-H. Indlekofer %A O. I. Klesov %T Strong Law of Large Numbers for Multiple Sums Whose Indices Belong to a Sector with Function Boundaries %J Teoriâ veroâtnostej i ee primeneniâ %D 2007 %P 803-810 %V 52 %N 4 %U http://geodesic.mathdoc.fr/item/TVP_2007_52_4_a10/ %G ru %F TVP_2007_52_4_a10
K.-H. Indlekofer; O. I. Klesov. Strong Law of Large Numbers for Multiple Sums Whose Indices Belong to a Sector with Function Boundaries. Teoriâ veroâtnostej i ee primeneniâ, Tome 52 (2007) no. 4, pp. 803-810. http://geodesic.mathdoc.fr/item/TVP_2007_52_4_a10/
[1] Baum L. E., Katz M., “Convergence rates in the law of large numbers”, Trans. Amer. Math. Soc., 120 (1965), 108–123 | DOI | MR | Zbl
[2] Dunford N., “An individual ergodic theorem for noncommutative transformations”, Acta Sci. Math. Szeged, 14 (1951), 1–4 | MR | Zbl
[3] Gut A., “Strong laws for independent identically distributed random variables indexed by a sector”, Ann. Probab., 11:3 (1983), 569–577 | DOI | MR | Zbl
[4] Klesov O. I., “Neravenstvo Gaeka–Reni dlya sluchainykh polei i usilennyi zakon bolshikh chisel”, Teoriya veroyatn. matem. statist., 22 (1980), 58–66 | MR | Zbl
[5] Klesov O. I., Rykhlik Z., “Usilennyi zakon bolshikh chisel na chastichno uporyadochennykh mnozhestvakh”, Teoriya veroyatn. matem. statist., 58 (1998), 31–37 | MR | Zbl
[6] Smythe R. T., “Strong law of large numbers for $r$-dimensional arrays of random variables”, Ann. Probab., 1:1 (1973), 164–170 | DOI | MR | Zbl
[7] Wiener N., “The ergodic theorem”, Duke Math. J., 5 (1939), 1–18 | DOI | MR
[8] Zygmund A., “An individual ergodic theorem for noncommutative transformations”, Acta Sci., 14 (1951), 103–110 | MR | Zbl