Strong Law of Large Numbers for Multiple Sums Whose Indices Belong to a Sector with Function Boundaries
Teoriâ veroâtnostej i ee primeneniâ, Tome 52 (2007) no. 4, pp. 803-810 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We find necessary and sufficient conditions for the strong law of large numbers for double sums of independent identically distributed random variables whose indices belong to a sector with function boundaries.
Keywords: strong law of large numbers, double sums, random fields.
@article{TVP_2007_52_4_a10,
     author = {K.-H. Indlekofer and O. I. Klesov},
     title = {Strong {Law} of {Large} {Numbers} for {Multiple} {Sums} {Whose} {Indices} {Belong} to a {Sector} with {Function} {Boundaries}},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {803--810},
     year = {2007},
     volume = {52},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_2007_52_4_a10/}
}
TY  - JOUR
AU  - K.-H. Indlekofer
AU  - O. I. Klesov
TI  - Strong Law of Large Numbers for Multiple Sums Whose Indices Belong to a Sector with Function Boundaries
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 2007
SP  - 803
EP  - 810
VL  - 52
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/TVP_2007_52_4_a10/
LA  - ru
ID  - TVP_2007_52_4_a10
ER  - 
%0 Journal Article
%A K.-H. Indlekofer
%A O. I. Klesov
%T Strong Law of Large Numbers for Multiple Sums Whose Indices Belong to a Sector with Function Boundaries
%J Teoriâ veroâtnostej i ee primeneniâ
%D 2007
%P 803-810
%V 52
%N 4
%U http://geodesic.mathdoc.fr/item/TVP_2007_52_4_a10/
%G ru
%F TVP_2007_52_4_a10
K.-H. Indlekofer; O. I. Klesov. Strong Law of Large Numbers for Multiple Sums Whose Indices Belong to a Sector with Function Boundaries. Teoriâ veroâtnostej i ee primeneniâ, Tome 52 (2007) no. 4, pp. 803-810. http://geodesic.mathdoc.fr/item/TVP_2007_52_4_a10/

[1] Baum L. E., Katz M., “Convergence rates in the law of large numbers”, Trans. Amer. Math. Soc., 120 (1965), 108–123 | DOI | MR | Zbl

[2] Dunford N., “An individual ergodic theorem for noncommutative transformations”, Acta Sci. Math. Szeged, 14 (1951), 1–4 | MR | Zbl

[3] Gut A., “Strong laws for independent identically distributed random variables indexed by a sector”, Ann. Probab., 11:3 (1983), 569–577 | DOI | MR | Zbl

[4] Klesov O. I., “Neravenstvo Gaeka–Reni dlya sluchainykh polei i usilennyi zakon bolshikh chisel”, Teoriya veroyatn. matem. statist., 22 (1980), 58–66 | MR | Zbl

[5] Klesov O. I., Rykhlik Z., “Usilennyi zakon bolshikh chisel na chastichno uporyadochennykh mnozhestvakh”, Teoriya veroyatn. matem. statist., 58 (1998), 31–37 | MR | Zbl

[6] Smythe R. T., “Strong law of large numbers for $r$-dimensional arrays of random variables”, Ann. Probab., 1:1 (1973), 164–170 | DOI | MR | Zbl

[7] Wiener N., “The ergodic theorem”, Duke Math. J., 5 (1939), 1–18 | DOI | MR

[8] Zygmund A., “An individual ergodic theorem for noncommutative transformations”, Acta Sci., 14 (1951), 103–110 | MR | Zbl