Limit Theorems for Probabilities of Large Deviations of a Critical Galton–Watson Process Having Power Tails
Teoriâ veroâtnostej i ee primeneniâ, Tome 52 (2007) no. 4, pp. 644-659 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Limit theorems are established for probabilities of large deviations of a critical Galton–Watson process given that the power moments are finite and the tail distribution of the offspring number of a single particle is regularly varying.
Keywords: Galton–Watson process, large deviations, regularly varying function.
Mots-clés : Cramér condition
@article{TVP_2007_52_4_a1,
     author = {V. I. Vakhtel'},
     title = {Limit {Theorems} for {Probabilities} of {Large} {Deviations} of a {Critical} {Galton{\textendash}Watson} {Process} {Having} {Power} {Tails}},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {644--659},
     year = {2007},
     volume = {52},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_2007_52_4_a1/}
}
TY  - JOUR
AU  - V. I. Vakhtel'
TI  - Limit Theorems for Probabilities of Large Deviations of a Critical Galton–Watson Process Having Power Tails
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 2007
SP  - 644
EP  - 659
VL  - 52
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/TVP_2007_52_4_a1/
LA  - ru
ID  - TVP_2007_52_4_a1
ER  - 
%0 Journal Article
%A V. I. Vakhtel'
%T Limit Theorems for Probabilities of Large Deviations of a Critical Galton–Watson Process Having Power Tails
%J Teoriâ veroâtnostej i ee primeneniâ
%D 2007
%P 644-659
%V 52
%N 4
%U http://geodesic.mathdoc.fr/item/TVP_2007_52_4_a1/
%G ru
%F TVP_2007_52_4_a1
V. I. Vakhtel'. Limit Theorems for Probabilities of Large Deviations of a Critical Galton–Watson Process Having Power Tails. Teoriâ veroâtnostej i ee primeneniâ, Tome 52 (2007) no. 4, pp. 644-659. http://geodesic.mathdoc.fr/item/TVP_2007_52_4_a1/

[1] Borovkov K. A., “Analiz perekhodnykh yavlenii dlya vetvyaschikhsya protsessov”, Teoriya veroyatn. i ee primen., 39:3 (1994), 449–468 | MR | Zbl

[2] Vatutin V. A., “Kriticheskii vetvyaschiisya protsess Galtona–Vatsona s emigratsiei”, Teoriya veroyatn. i ee primen., 22:3 (1977), 482–497 | MR | Zbl

[3] Karpenko A. V., Predelnye teoremy i veroyatnostnye neravenstva dlya polnogo i maksimalnogo chisla potomkov vetvyaschegosya protsessa Galtona–Vatsona, Diss. $\dots$ kand. fiz.-matem. nauk, Novosibirsk, 1990

[4] Makarov G. D., “Bolshie ukloneniya dlya kriticheskogo protsessa Galtona–Vatsona”, Teoriya veroyatn. i ee primen., 25:3 (1980), 490–501 | MR | Zbl

[5] Makarov G. D., “Asimptotika veroyatnostei bolshikh uklonenii dlya kriticheskikh markovskikh vetvyaschikhsya protsessov”, Vestn. MGU, ser. matem., mekh., 1983, 7–9 | Zbl

[6] Nagaev S. V., Vakhrushev N. V., “Otsenka veroyatnostei bolshikh uklonenii dlya kriticheskogo protsessa Galtona–Vatsona”, Teoriya veroyatn. i ee primen., 20:1 (1975), 181–182 | Zbl

[7] Nagaev S. V., Vakhtel V. I., “Predelnye teoremy dlya veroyatnostei bolshikh uklonenii protsessa Galtona–Vatsona”, Diskret. matem., 15:1 (2003), 3–27 | Zbl

[8] Nagaev S. V., Vakhtel V. I., “Veroyatnostnye neravenstva dlya kriticheskogo protsessa Galtona–Vatsona”, Teoriya veroyatn. i ee primen., 50:2 (2005), 266–291 | MR

[9] Feller V., Vvedenie v teoriyu veroyatnostei i ee prilozheniya, t. 2, Mir, M., 1967, 752 pp. | MR

[10] Athreya K. B., Ney P. E., Branching Processes, Springer, Berlin, 1972, 287 pp. | MR | Zbl

[11] von Bahr B., Esseen C.-G., “Inequalities for the $r$th absolute moment of a sum of random variables, $1\le r\le2$”, Ann. Math. Statist., 36 (1965), 299–303 | DOI | MR | Zbl

[12] Petrov V. V., Summy nezavisimykh sluchainykh velichin, Nauka, M., 1972, 414 pp. | MR

[13] Slack R. S., “A branching process with mean one and possibly infinite variance”, Z. Wahrscheinlichkeitstheor. Verw. Geb., 9 (1968), 139–145 | DOI | MR | Zbl

[14] Slack R. S., “Further notes on branching process with mean one”, Z. Wahrscheinlichkeitstheor. Verw. Geb., 25 (1972), 31–38 | DOI | MR | Zbl

[15] Sze M., “Markov processes associated with critical Galton–Watson processes with application to extinction probabilities”, Adv. Appl. Probab., 8:2 (1976), 278–295 | DOI | MR | Zbl

[16] Vatutin V. A., Vakhtel V., Fleishman K., “Kriticheskie protsessy Galtona–Vatsona: maksimum obschego chisla chastits vnutri bolshogo okna”, Teoriya veroyatn. i ee primen., 52:3 (2007), 419–445