Minimax Sequential Tests for Many Composite Hypotheses. I
Teoriâ veroâtnostej i ee primeneniâ, Tome 52 (2007) no. 4, pp. 625-643 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The problem of sequential testing of many composite hypotheses is considered. Each hypothesis is described by the density function of observations that depends on a parameter from one of disjoint sets. New performance measures for one-sided and multisided sequential tests are proposed and nonasymptotical a priori lower bounds for these measures are proved. Sequential tests are found which use a minimax procedure on parametric sets for sequential likelihood ratio and are asymptotically optimal: the a priori lower bounds for performance measures are attained for these tests. All proofs are in Part II.
Keywords: composite multihypothesis testing, sequential tests.
@article{TVP_2007_52_4_a0,
     author = {B. E. Brodskii and B. S. Darhovsky},
     title = {Minimax {Sequential} {Tests} for {Many} {Composite} {Hypotheses.~I}},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {625--643},
     year = {2007},
     volume = {52},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_2007_52_4_a0/}
}
TY  - JOUR
AU  - B. E. Brodskii
AU  - B. S. Darhovsky
TI  - Minimax Sequential Tests for Many Composite Hypotheses. I
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 2007
SP  - 625
EP  - 643
VL  - 52
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/TVP_2007_52_4_a0/
LA  - ru
ID  - TVP_2007_52_4_a0
ER  - 
%0 Journal Article
%A B. E. Brodskii
%A B. S. Darhovsky
%T Minimax Sequential Tests for Many Composite Hypotheses. I
%J Teoriâ veroâtnostej i ee primeneniâ
%D 2007
%P 625-643
%V 52
%N 4
%U http://geodesic.mathdoc.fr/item/TVP_2007_52_4_a0/
%G ru
%F TVP_2007_52_4_a0
B. E. Brodskii; B. S. Darhovsky. Minimax Sequential Tests for Many Composite Hypotheses. I. Teoriâ veroâtnostej i ee primeneniâ, Tome 52 (2007) no. 4, pp. 625-643. http://geodesic.mathdoc.fr/item/TVP_2007_52_4_a0/

[1] Wald A., “Sequential tests of statistical hypotheses”, Ann. Math. Statist., 16 (1945), 117–186 | DOI | MR | Zbl

[2] Shiryaev A. N., Statisticheskii posledovatelnyi analiz, Nauka, M., 1976, 272 pp. | MR | Zbl

[3] Wald A., Wolfowitz J., “Optimum character of the sequential probability ratio test”, Ann. Math. Statist., 19 (1948), 326–339 | DOI | MR | Zbl

[4] Kiefer J., Weiss L., “Some properties of generalized sequential probability ratio tests”, Ann. Math. Statist., 28 (1957), 57–74 | DOI | MR | Zbl

[5] Lai T. L., “Optimal stopping and sequential tests which minimize the maximum expected sample size”, Ann. Statist., 1 (1973), 659–673 | DOI | MR | Zbl

[6] Lai T. L., “Nearly optimal sequential tests of composite hypotheses”, Ann. Statist., 16:2 (1988), 856–886 | DOI | MR | Zbl

[7] Dragalin V. P., Novikov A. A., “Asimptoticheskoe reshenie zadachi Kifera–Veisa dlya protsessov s nezavisimymi prirascheniyami”, Teoriya veroyatn. i ee primen., 32:4 (1987), 679–690 | MR

[8] Hoeffding W., “Lower bounds for the expected sample size and the average risk of a sequential procedure”, Ann. Math. Statist., 31 (1960), 352–368 | DOI | MR | Zbl

[9] Lorden G., “2-SPRT's and the modified Kiefer–Weiss problem of minimizing an expected sample size”, Ann. Statist., 4:2 (1976), 281–291 | DOI | MR | Zbl

[10] Bartlett M. S., “The large-sample theory of sequential tests”, Proc. Cambridge Philos. Soc., 42 (1946), 239–244 | DOI | MR | Zbl

[11] Cox D. R., “Large sample sequential tests for composite hypotheses”, Sankhy{\accent'26 a}, 25 (1963), 5–12 | MR | Zbl

[12] Joanes D. N., “Sequential tests of composite hypotheses”, Biometrika, 59 (1972), 633–637 | DOI | MR | Zbl

[13] Gombay E., “Sequential testing of composite hypotheses”, Limit Theorems in Probability and Statistics, vol. 2 (1999, Balatonlelle), János Bolyai Math. Soc., Budapest, 2002, 107–125 | MR | Zbl

[14] Cox C. P., Roseberry T. D., “A large sample sequential test, using concomitant information, for discrimination between two composite hypotheses”, J. Amer. Statist. Assoc., 61 (1966), 357–367 | DOI | MR

[15] Aivazyan S. A., “Sravnenie optimalnykh svoistv kriteriev Neimana–Pirsona i Valda”, Teoriya veroyatn. i ee primen., 4:1 (1959), 86–93

[16] Dragalin V. P., Novikov A. A., “Adaptive sequential tests for composite hypotheses”, Obozrenie prikl. promyshl. matem., 6:2 (1999), 387–398 | MR

[17] Lorden G., “Nearly-optimal sequential tests for finitely many parameter values”, Ann. Statist., 5:1 (1977), 1–21 | DOI | MR | Zbl

[18] Pavlov I. V., “Posledovatelnaya protsedura razlicheniya mnogikh slozhnykh gipotez”, Teoriya veroyatn. i ee primen., 32:1 (1987), 149–153 | MR | Zbl

[19] Dragalin V. P., Tartakovsky A. G., Veeravalli V. V., “Multihypothesis sequential probability ratio tests. I. Asymptotic optimality”, IEEE Trans. Inform. Theory, 45 (1999), 2448–2461 | DOI | MR | Zbl

[20] Dragalin V. P., Tartakovsky A. G., Veeravalli V. V., “Multihypothesis sequential probability ratio tests. II. Accurate asymptotic expansions for the expected sample size”, IEEE Trans. Inform. Theory, 46:4 (2000), 1366–1383 | DOI | MR | Zbl

[21] Fishman M. M., “Asimptoticheski optimalnye mnogoalternativnye posledovatelnye protsedury dlya razlicheniya protsessov, minimiziruyuschie srednyuyu dlitelnost nablyudenii”, Radiotekhnika i elektronika, 29:8 (1984), 1516–1524 | MR

[22] Golubev G. K., Khasminskii R. Z., “O posledovatelnom razlichenii neskolkikh signalov v gaussovskom belom shume”, Teoriya veroyatn. i ee primen., 28:3 (1983), 544–554 | MR | Zbl

[23] Baum C. W., Veeravalli V. V., “A sequential procedure for multihypothesis testing”, IEEE Trans. Inform. Theory, 40:6 (1994), 1994–2007 | DOI | MR | Zbl

[24] Armitage P., “Sequential analysis with more than two alternative hypotheses, and its relation to discriminant function analysis”, J. Roy. Statist. Soc. Ser. B, 12 (1950), 137–144 | MR | Zbl

[25] Tartakovsky A. G., “Asymptotic optimality of certain multihypothesis sequential tests: non-i.i.d. case”, Stat. Inference Stoch. Process., 1:3 (1998), 265–295 | DOI | Zbl

[26] Tartakovsky A. G., Li X. R., Yaralov G., “Sequential detection of targets in multichannel systems”, IEEE Trans. Inform. Theory, 49:2 (2003), 425–445 | DOI | MR | Zbl

[27] Lai T. L., “Sequential multiple hypothesis testing and efficient fault detection-isolation in stochastic systems”, IEEE Trans. Inform. Theory, 46:2 (2000), 595–608 | DOI | Zbl

[28] Simons G., “Lower bounds for average sample number of sequential multihypothesis tests”, Ann. Math. Statist., 38 (1967), 1343–1364 | DOI | MR | Zbl

[29] Brodskii B. E., Darkhovskii B. S., “Sravnitelnyi analiz nekotorykh neparametricheskikh metodov skoreishego obnaruzheniya momenta “razladki” sluchainoi posledovatelnosti”, Teoriya veroyatn. i ee primen., 35:4 (1990), 655–668 | MR

[30] Brodsky B. E., Darkhovsky B. S., Non-parametric Statistical Diagnosis: Problems and Methods, Kluwer, Dordrecht, 2000, 452 pp. | MR | Zbl

[31] Darkhovskii B. S., Brodskii B. E., “Neparametricheskii metod skoreishego obnaruzheniya izmeneniya srednego sluchainoi posledovatelnosti”, Teoriya veroyatn. i ee primen., 32:4 (1987), 703–711 | MR

[32] Brodskii B. E., Darkhovskii B. S., “Asimptoticheski optimalnye metody posledovatelnoi proverki slozhnykh gipotez”, Dokl. RAN, 408:1 (2006), 11–15 | MR

[33] Petrov V. V., Predelnye teoremy dlya summ nezavisimykh sluchainykh velichin, Nauka, M., 1987, 317 pp. | MR

[34] Woodroofe M., Nonlinear Renewal Theory in Sequential Analysis, SIAM, Philadelphia, 1982, 119 pp. | MR