Keywords: Matsumoto zeta-function, random element, probability measure, weak convergence.
@article{TVP_2007_52_3_a9,
author = {R. Kacinskaite and A. P. Laurincikas},
title = {A general discrete limit theorem in the space of analytic functions for the {Matsumoto} zeta-function},
journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
pages = {594--603},
year = {2007},
volume = {52},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TVP_2007_52_3_a9/}
}
TY - JOUR AU - R. Kacinskaite AU - A. P. Laurincikas TI - A general discrete limit theorem in the space of analytic functions for the Matsumoto zeta-function JO - Teoriâ veroâtnostej i ee primeneniâ PY - 2007 SP - 594 EP - 603 VL - 52 IS - 3 UR - http://geodesic.mathdoc.fr/item/TVP_2007_52_3_a9/ LA - ru ID - TVP_2007_52_3_a9 ER -
%0 Journal Article %A R. Kacinskaite %A A. P. Laurincikas %T A general discrete limit theorem in the space of analytic functions for the Matsumoto zeta-function %J Teoriâ veroâtnostej i ee primeneniâ %D 2007 %P 594-603 %V 52 %N 3 %U http://geodesic.mathdoc.fr/item/TVP_2007_52_3_a9/ %G ru %F TVP_2007_52_3_a9
R. Kacinskaite; A. P. Laurincikas. A general discrete limit theorem in the space of analytic functions for the Matsumoto zeta-function. Teoriâ veroâtnostej i ee primeneniâ, Tome 52 (2007) no. 3, pp. 594-603. http://geodesic.mathdoc.fr/item/TVP_2007_52_3_a9/
[1] Matsumoto K., “Value-distribution of zeta-functions”, Lecture Notes in Math., 1434, 1990, 178–187 | MR | Zbl
[2] Matsumoto K., “On the magnitude of asymptotic probability measures of Dedekind zeta-functions and other Euler products”, Acta Arith., 60:2 (1991), 125–147 | MR | Zbl
[3] Matsumoto K., “Asymptotic probability measures of Euler products”, Proceedings of the Amalfi Conference on Analytic Number Theory (Maiori, 1989), Univ. Salerno, Salerno, 1992, 295–313 | MR | Zbl
[4] Laurinčikas A., “Limit theorems for the Matsumoto zeta-function”, J. Théorie Nombres Bordeaux, 1996, no. 1, 143–158 | MR | Zbl
[5] Laurinchikas A., “O predelnom raspredelenie dzeta-funktsii Matsumoto. II”, Liet. Matem. Rink., 36 (1996), 464–485 | MR
[6] Laurinčikas A., “On limit distribution of the Matsumoto zeta-function”, Acta Arith., 79:1 (1997), 31–39 | MR | Zbl
[7] Laurinčikas A., “On the Matsumoto zeta-function”, Acta Arith., 84:1 (1998), 1–16 | MR | Zbl
[8] Kachinskaite R., “Diskretnaya predelnaya teorema dlya dzeta-funktsii Matsumoto na kompleksnoi ploskosti”, Liet. Matem. Rink., 40:4 (2000), 475–492 | MR
[9] Kachinskaite R., “Diskretnaya predelnaya teorema dlya dzeta-funktsii Matsumoto v prostranstve analiticheskikh funktsii”, Liet. Matem. Rink., 41:4 (2001), 441–448 | MR
[10] Kachinskaite R., “Diskretnaya predelnaya teorema dlya dzeta-funktsii Matsumoto v prostranstve meromorfnykh funktsii”, Liet. Matem. Rink., 42:1 (2002), 46–67 | MR
[11] Billingsli P., Skhodimost veroyatnostnykh mer, Nauka, M., 1977, 351 pp. | MR
[12] Laurinčikas A., Limit Theorems for the Riemann Zeta-Function, Kluwer, Dordrecht, 1996, 297 pp. | MR
[13] Conway J. B., Functions of One Complex Variable, Springer-Verlag, New York–Heidelberg, 1973, 313 pp. | MR | Zbl
[14] Prokhorov Yu. V., “Skhodimost sluchainykh protsessov i predelnye teoremy teorii veroyatnostei”, Teoriya veroyatn. i ee primen., 1:2 (1956), 177–238 | MR | Zbl
[15] Tempelman A. A., Ergodicheskie teoremy na gruppakh, Mokslas, Vilnyus, 1986, 225 pp. | MR