Mots-clés : martingales, Cramér–von Mises statistics.
@article{TVP_2007_52_3_a7,
author = {J. Dedecker and F. Merlevede},
title = {Convergence rates in the law of large numbers for {Banach-valued} dependent variables},
journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
pages = {562--587},
year = {2007},
volume = {52},
number = {3},
language = {en},
url = {http://geodesic.mathdoc.fr/item/TVP_2007_52_3_a7/}
}
TY - JOUR AU - J. Dedecker AU - F. Merlevede TI - Convergence rates in the law of large numbers for Banach-valued dependent variables JO - Teoriâ veroâtnostej i ee primeneniâ PY - 2007 SP - 562 EP - 587 VL - 52 IS - 3 UR - http://geodesic.mathdoc.fr/item/TVP_2007_52_3_a7/ LA - en ID - TVP_2007_52_3_a7 ER -
J. Dedecker; F. Merlevede. Convergence rates in the law of large numbers for Banach-valued dependent variables. Teoriâ veroâtnostej i ee primeneniâ, Tome 52 (2007) no. 3, pp. 562-587. http://geodesic.mathdoc.fr/item/TVP_2007_52_3_a7/
[1] de Acosta A., “Inequalities for B-valued random vectors with applications to the strong law of large numbers”, Ann. Probab., 9:1 (1981), 157–161 | DOI | MR | Zbl
[2] Assouad P., “Espaces $p$-lisses et $q$-convexes, inégalités de Burkholder”, Séminaire Maurey–Schwartz 1974–1975: Espaces $L^p$, applications radonifiantes et géométrie des espaces de Banach, Centre Math., École Polytech., Paris, 1975, Exp. no XV, 8 pp. | MR
[3] Baum L. E., Katz M., “Convergence rates in the law of large numbers”, Trans. Amer. Math. Soc., 120 (1965), 108–123 | DOI | MR | Zbl
[4] Berbee H. C. P., “Convergence rates in the strong law for bounded mixing sequences”, Probab. Theory Related Fields, 74:2 (1987), 255–270 | DOI | MR | Zbl
[5] Bosq D., Linear Processes in Function Spaces. Theory and Applications, Lecture Notes in Statist., 149, Springer-Verlag, New York, 2000, 283 pp. | MR | Zbl
[6] Bradley R. C., Introduction to strong mixing conditions, Technical Report. V. 1, Dept. of Math., Indiana Univ., Custom Publishing of I. U., Bloomington, 2002 | MR
[7] Dedecker J., Doukhan P., “A new covariance inequality and applications”, Stochastic Process. Appl., 106:1 (2003), 63–80 | DOI | MR | Zbl
[8] Dedecker J., Merlevède F., “The conditional central limit theorem in Hilbert spaces”, Stochastic Process. Appl., 108:2 (2003), 229–262 | MR | Zbl
[9] Dedecker J., Prieur C., “New dependence coefficients. Examples and applications to statistics”, Probab. Theory Related Fields, 132:2 (2005), 203–236 | DOI | MR | Zbl
[10] Elton J., “A law of large numbers for identically distributed martingale differences”, Ann. Probab., 9:3 (1981), 405–412 | DOI | MR | Zbl
[11] Gordin M. I., “O tsentralnoi predelnoi teoreme dlya statsionarnykh protsessov”, Dokl. AN SSSR, 188:4 (1969), 739–741 | MR | Zbl
[12] Hall P., Heyde C. C., Martingale Limit Theory and its Applications, Academic Press, New York–London, 1980, 308 pp. | MR
[13] Hipp C., “Convergence rates of the strong law for stationary mixing sequences”, Z. Wahrscheinlichkeitstheor. Verw. Geb., 49:1 (1979), 49–62 | DOI | MR | Zbl
[14] Lai T. L., “Convergence rates and $r$-quick versions of the strong law for stationary mixing sequences”, Ann. Probab., 5 (1977), 693–706 | DOI | MR | Zbl
[15] Lesigne E., Volný D., “Large deviations for martingales”, Stochastic Process. Appl., 96:1 (2001), 143–159 | DOI | MR | Zbl
[16] McLeish D. L., “A maximal inequality and dependent strong laws”, Ann. Probab., 3:5 (1975), 829–839 | DOI | MR | Zbl
[17] Merlevède F., “On the central limit theorem and its weak invariance principle for strongly mixing sequences with values in a Hilbert space via martingale approximation”, J. Theoret. Probab., 16:3 (2003), 625–653 | DOI | MR | Zbl
[18] Mourier E., “Éléments aléatoires dans un espace de Banach”, Ann. Inst. H. Poincaré, 13 (1953), 161–244 | MR | Zbl
[19] Peligrad M., “Convergence rates of the strong law for stationary mixing sequences”, Z. Wahrscheinlichkeitstheor. Verw. Geb., 70:2 (1985), 307–314 | DOI | MR | Zbl
[20] Peligrad M., “The $r$-quick version of the strong law for stationary $\varphi$-mixing sequences”, Almost Everywhere Convergence (Columbus, 1988), Academic Press, Boston, 1989, 335–348 | MR
[21] Pisier G., “Martingales with values in uniformly convex spaces”, Israel J. Math., 20:3–4 (1975), 326–350 | DOI | MR | Zbl
[22] Rio E., “A maximal inequality and dependent Marcinkiewicz–Zygmund strong laws”, Ann. Probab., 23:2 (2002), 918–937 | DOI | MR
[23] Rio E., Théorie asymptotique des processus aléatoires faiblement dépendants, Math. Appl. (Berlin), 31, Springer-Verlag, Berlin, 2000, 169 pp. | MR | Zbl
[24] Rosenblatt M., “A central limit theorem and a strong mixing condition”, Proc. Natl. Acad. Sci. USA, 42 (1956), 43–47 | DOI | MR | Zbl
[25] Rudin W., Real and Complex Analysis, McGraw-Hill, New York, 1987, 416 pp. | MR | Zbl
[26] Shao Q.-M., “Complete convergence for $\alpha$-mixing sequences”, Statist. Probab. Lett., 16:4 (1993), 279–287 | DOI | MR | Zbl
[27] Woyczyński W. A., “A central limit theorem for martingales in Banach spaces”, Bull. Acad. Polon. Sci., 23:8 (1975), 917–920 | MR | Zbl
[28] Woyczyński W. A., “Laws of large numbers for vector-valued martingales”, Bull. Acad. Polon. Sci., 23:11 (1975), 1199–1201 | MR
[29] Woyczyński W. A., “Asymptotic behavior of martingales in Banach spaces. II”, Martingale Theory in Harmonic Analysis and Banach Spaces (Cleveland, 1981), Lecture Notes in Math., 939, Springer, Berlin–New York, 1982, 216–225 | MR