A stochastic differential equation framework for the timewise dynamics of turbulent velocities
Teoriâ veroâtnostej i ee primeneniâ, Tome 52 (2007) no. 3, pp. 541-561 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We discuss a stochastic differential equation as a modeling framework for the timewise dynamics of turbulent velocities. The equation is capable of capturing basic stylized facts of the statistics of temporal velocity increments. In particular, we focus on the evolution of the probability density of velocity increments, characterized by a normal inverse Gaussian shape with heavy tails for small scales and approximately Gaussian tails for large scales. In addition, we show that the proposed model is in accordance with the experimental verification of Kolmogorov's refined similarity hypotheses.
Keywords: energy dissipation, intermittency, inverse Gaussian distribution, normal inverse Gaussian distribution, refined similarity hypotheses
Mots-clés : turbulence.
@article{TVP_2007_52_3_a6,
     author = {O. E. Barndorff-Nielsen and J. Schmiegel},
     title = {A stochastic differential equation framework for the timewise dynamics of turbulent velocities},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {541--561},
     year = {2007},
     volume = {52},
     number = {3},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TVP_2007_52_3_a6/}
}
TY  - JOUR
AU  - O. E. Barndorff-Nielsen
AU  - J. Schmiegel
TI  - A stochastic differential equation framework for the timewise dynamics of turbulent velocities
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 2007
SP  - 541
EP  - 561
VL  - 52
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TVP_2007_52_3_a6/
LA  - en
ID  - TVP_2007_52_3_a6
ER  - 
%0 Journal Article
%A O. E. Barndorff-Nielsen
%A J. Schmiegel
%T A stochastic differential equation framework for the timewise dynamics of turbulent velocities
%J Teoriâ veroâtnostej i ee primeneniâ
%D 2007
%P 541-561
%V 52
%N 3
%U http://geodesic.mathdoc.fr/item/TVP_2007_52_3_a6/
%G en
%F TVP_2007_52_3_a6
O. E. Barndorff-Nielsen; J. Schmiegel. A stochastic differential equation framework for the timewise dynamics of turbulent velocities. Teoriâ veroâtnostej i ee primeneniâ, Tome 52 (2007) no. 3, pp. 541-561. http://geodesic.mathdoc.fr/item/TVP_2007_52_3_a6/

[1] Barndorff-Nielsen O. E., Blæsild P., Schmiegel J., “A parsimonious and universal description of turbulent velocity increments”, European Phys. J. B, 41:3 (2004), 345–363 | DOI

[2] Barndorf–Nilsen O. E., Shmigel Yu., “Prostranstvenno-vremennoe modelirovanie, osnovannoe na protsessakh Levi, i ego prilozheniya k turbulentnosti”, Uspekhi matem. nauk, 59:1(355) (2004), 63–90 | MR

[3] Barndorff-Nielsen O. E., Schmiegel J., “Ambit processes; with applications to turbulence and tumour growth”, Proceedings of the Abel symposium (Oslo, 2005), Springer-Verlag, Berlin (to appear) | MR

[4] Barndorff-Nielsen O. E., Shephard N., “Non-Gaussian Ornstein–Uhlenbeck-based models and some of their uses in financial economics”, J. Roy Statist. Soc. Ser. B, 63:2 (2001), 167–241 | DOI | MR | Zbl

[5] Barndorff-Nielsen O. E., Shephard N., Continuous Time Approach to Financial Volatility, Cambridge Univ. Press, Cambridge (to appear)

[6] Benzi R., Ciliberto S., Tripiccione R., Baudet C., Massaioli F., Succi S., “Extended self-similarity in turbulent flows”, Phys. Rev. E, 48 (1993), R29–R32 | DOI

[7] Castaing B., Gagne Y., Hopfinger E. J., “Velocity probability density functions of high Reynolds number turbulence”, Phys. D, 46 (1990), 177–200 | DOI | Zbl

[8] Frish U., Turbulentnost. Nasledie A. N. Kolmogorova, URSS, M., 1998, 346 pp.

[9] Hosokawa I., Van Atta C. W., Thoroddsen S. T., “Experimental study of the Kolmogorov refined similarity variable”, Fluid Dyn. Res., 13 (1994), 329–333 | DOI

[10] Jacod J., Shiryaev A. N., Limit Theorems for Stochastic Processes, Springer-Verlag, Berlin, 2003, 661 pp. | MR

[11] Kolmogorov A. N., “Lokalnaya struktura turbulentnosti v neszhimaemoi vyazkoi zhidkosti pri ochen bolshikh chislakh Reinoldsa”, Dokl. AN SSSR, 30:4 (1941), 299–303

[12] Kolmogorov A. N., “Rasseyanie energii pri lokalno izotropnoi turbulentnosti”, Dokl. AN SSSR, 32:1 (1941), 19–21

[13] Kolmogorov A. N., “Utochnenie predstavlenii o lokalnoi strukture turbulentnosti v neszhimaemoi vyazkoi zhidkosti pri bolshikh chislakh Reinoldsa”, Mécanique de la turbulence, Actes du Colloque International du CNRS (Marseille, 1961), Éditions du CNRS, Paris, 1962, 447–458 ; А. Н. Колмогоров, Избр. труды. Математика и механика, Наука, М., 1985, 348–352 | MR

[14] Logan B. F., Mallows C. L., Rice S. O., Shepp L. A., “Limit distributions of self-normalized sums”, Ann. Probab., 1 (1973), 788–809 | DOI | MR | Zbl

[15] Monin A. S., Yaglom A. M., Statisticheskaya gidromekhanika, Ch. 1, 2, Nauka, M., 1965, 639 pp.; 1967, 720 с.

[16] Obukhov A. M., “Some specific features of atmospheric turbulence”, J. Fluid Mech., 13 (1962), 77–81 | DOI | MR

[17] Protter P. E., Stochastic Integration and Differential Equations, Springer-Verlag, Berlin, 2004, 415 pp. | MR

[18] Schmiegel J., “Self-scaling of turbulent energy dissipation correlators”, Phys. Lett. A, 337 (2005), 342–353 | DOI | Zbl

[19] Schmiegel J., Barndorff-Nielsen O. E., Eggers H. C., “A class of spatio-temporal and causal stochastic processes, with applications to multiscaling and multifractality”, South African J. Sci., 101 (2006), 513–519

[20] Schmiegel J., Cleve J., Eggers H. C., Pearson B. R., Greiner M., “Stochastic energy-cascade model for $(1+1)$-dimensional fully developed turbulence”, Phys. Lett. A, 320 (2004), 247–253 | DOI | Zbl

[21] Staicu A., van de Water W., “Small scale velocity jumps in shear turbulence”, Phys. Rev. Lett., 90 (2003), 094501 | DOI

[22] Stolovitzky G., Kailasnath P., Sreenivasan K. R., “Kolmogorov's refined similarity hypothesis”, Phys. Rev. Lett., 69 (1992), 1178–1181 | DOI

[23] Stolovitzky G., Sreenivasan K. R., “Kolmogorov's refined similarity hypotheses for turbulence and general stochastic processes”, Rev. Modern Phys., 66 (1994), 229–239 | DOI

[24] Taylor G. I., “The spectrum of turbulence”, Proc. Roy. Soc. London Ser. A, 164 (1938), 476–490 | DOI

[25] van de Water W., “Anomalous scaling and anisotropy in turbulence”, Phys. B, 228 (1996), 185–191 | DOI

[26] Vincent A., Meneguzzi M., “The spatial structure and statistical properties of homogeneous turbulence”, J. Fluid Mech., 225 (1991), 1–20 | DOI | Zbl

[27] Zhu Y., Antonia R. A., Hosokawa I., “Refined similarity hypotheses for turbulent velocity and temperature fields”, Phys. Fluids, 7 (1995), 1637–1648 | DOI