Mots-clés : turbulence.
@article{TVP_2007_52_3_a6,
author = {O. E. Barndorff-Nielsen and J. Schmiegel},
title = {A stochastic differential equation framework for the timewise dynamics of turbulent velocities},
journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
pages = {541--561},
year = {2007},
volume = {52},
number = {3},
language = {en},
url = {http://geodesic.mathdoc.fr/item/TVP_2007_52_3_a6/}
}
TY - JOUR AU - O. E. Barndorff-Nielsen AU - J. Schmiegel TI - A stochastic differential equation framework for the timewise dynamics of turbulent velocities JO - Teoriâ veroâtnostej i ee primeneniâ PY - 2007 SP - 541 EP - 561 VL - 52 IS - 3 UR - http://geodesic.mathdoc.fr/item/TVP_2007_52_3_a6/ LA - en ID - TVP_2007_52_3_a6 ER -
%0 Journal Article %A O. E. Barndorff-Nielsen %A J. Schmiegel %T A stochastic differential equation framework for the timewise dynamics of turbulent velocities %J Teoriâ veroâtnostej i ee primeneniâ %D 2007 %P 541-561 %V 52 %N 3 %U http://geodesic.mathdoc.fr/item/TVP_2007_52_3_a6/ %G en %F TVP_2007_52_3_a6
O. E. Barndorff-Nielsen; J. Schmiegel. A stochastic differential equation framework for the timewise dynamics of turbulent velocities. Teoriâ veroâtnostej i ee primeneniâ, Tome 52 (2007) no. 3, pp. 541-561. http://geodesic.mathdoc.fr/item/TVP_2007_52_3_a6/
[1] Barndorff-Nielsen O. E., Blæsild P., Schmiegel J., “A parsimonious and universal description of turbulent velocity increments”, European Phys. J. B, 41:3 (2004), 345–363 | DOI
[2] Barndorf–Nilsen O. E., Shmigel Yu., “Prostranstvenno-vremennoe modelirovanie, osnovannoe na protsessakh Levi, i ego prilozheniya k turbulentnosti”, Uspekhi matem. nauk, 59:1(355) (2004), 63–90 | MR
[3] Barndorff-Nielsen O. E., Schmiegel J., “Ambit processes; with applications to turbulence and tumour growth”, Proceedings of the Abel symposium (Oslo, 2005), Springer-Verlag, Berlin (to appear) | MR
[4] Barndorff-Nielsen O. E., Shephard N., “Non-Gaussian Ornstein–Uhlenbeck-based models and some of their uses in financial economics”, J. Roy Statist. Soc. Ser. B, 63:2 (2001), 167–241 | DOI | MR | Zbl
[5] Barndorff-Nielsen O. E., Shephard N., Continuous Time Approach to Financial Volatility, Cambridge Univ. Press, Cambridge (to appear)
[6] Benzi R., Ciliberto S., Tripiccione R., Baudet C., Massaioli F., Succi S., “Extended self-similarity in turbulent flows”, Phys. Rev. E, 48 (1993), R29–R32 | DOI
[7] Castaing B., Gagne Y., Hopfinger E. J., “Velocity probability density functions of high Reynolds number turbulence”, Phys. D, 46 (1990), 177–200 | DOI | Zbl
[8] Frish U., Turbulentnost. Nasledie A. N. Kolmogorova, URSS, M., 1998, 346 pp.
[9] Hosokawa I., Van Atta C. W., Thoroddsen S. T., “Experimental study of the Kolmogorov refined similarity variable”, Fluid Dyn. Res., 13 (1994), 329–333 | DOI
[10] Jacod J., Shiryaev A. N., Limit Theorems for Stochastic Processes, Springer-Verlag, Berlin, 2003, 661 pp. | MR
[11] Kolmogorov A. N., “Lokalnaya struktura turbulentnosti v neszhimaemoi vyazkoi zhidkosti pri ochen bolshikh chislakh Reinoldsa”, Dokl. AN SSSR, 30:4 (1941), 299–303
[12] Kolmogorov A. N., “Rasseyanie energii pri lokalno izotropnoi turbulentnosti”, Dokl. AN SSSR, 32:1 (1941), 19–21
[13] Kolmogorov A. N., “Utochnenie predstavlenii o lokalnoi strukture turbulentnosti v neszhimaemoi vyazkoi zhidkosti pri bolshikh chislakh Reinoldsa”, Mécanique de la turbulence, Actes du Colloque International du CNRS (Marseille, 1961), Éditions du CNRS, Paris, 1962, 447–458 ; А. Н. Колмогоров, Избр. труды. Математика и механика, Наука, М., 1985, 348–352 | MR
[14] Logan B. F., Mallows C. L., Rice S. O., Shepp L. A., “Limit distributions of self-normalized sums”, Ann. Probab., 1 (1973), 788–809 | DOI | MR | Zbl
[15] Monin A. S., Yaglom A. M., Statisticheskaya gidromekhanika, Ch. 1, 2, Nauka, M., 1965, 639 pp.; 1967, 720 с.
[16] Obukhov A. M., “Some specific features of atmospheric turbulence”, J. Fluid Mech., 13 (1962), 77–81 | DOI | MR
[17] Protter P. E., Stochastic Integration and Differential Equations, Springer-Verlag, Berlin, 2004, 415 pp. | MR
[18] Schmiegel J., “Self-scaling of turbulent energy dissipation correlators”, Phys. Lett. A, 337 (2005), 342–353 | DOI | Zbl
[19] Schmiegel J., Barndorff-Nielsen O. E., Eggers H. C., “A class of spatio-temporal and causal stochastic processes, with applications to multiscaling and multifractality”, South African J. Sci., 101 (2006), 513–519
[20] Schmiegel J., Cleve J., Eggers H. C., Pearson B. R., Greiner M., “Stochastic energy-cascade model for $(1+1)$-dimensional fully developed turbulence”, Phys. Lett. A, 320 (2004), 247–253 | DOI | Zbl
[21] Staicu A., van de Water W., “Small scale velocity jumps in shear turbulence”, Phys. Rev. Lett., 90 (2003), 094501 | DOI
[22] Stolovitzky G., Kailasnath P., Sreenivasan K. R., “Kolmogorov's refined similarity hypothesis”, Phys. Rev. Lett., 69 (1992), 1178–1181 | DOI
[23] Stolovitzky G., Sreenivasan K. R., “Kolmogorov's refined similarity hypotheses for turbulence and general stochastic processes”, Rev. Modern Phys., 66 (1994), 229–239 | DOI
[24] Taylor G. I., “The spectrum of turbulence”, Proc. Roy. Soc. London Ser. A, 164 (1938), 476–490 | DOI
[25] van de Water W., “Anomalous scaling and anisotropy in turbulence”, Phys. B, 228 (1996), 185–191 | DOI
[26] Vincent A., Meneguzzi M., “The spatial structure and statistical properties of homogeneous turbulence”, J. Fluid Mech., 225 (1991), 1–20 | DOI | Zbl
[27] Zhu Y., Antonia R. A., Hosokawa I., “Refined similarity hypotheses for turbulent velocity and temperature fields”, Phys. Fluids, 7 (1995), 1637–1648 | DOI