Keywords: coherent risk measure, extreme measure, generator, no good deals, risk contribution, risk-neutral measure, support function, transaction costs, weighted V@R.
@article{TVP_2007_52_3_a5,
author = {A. S. Cherny},
title = {Pricing with coherent risk},
journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
pages = {506--540},
year = {2007},
volume = {52},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TVP_2007_52_3_a5/}
}
A. S. Cherny. Pricing with coherent risk. Teoriâ veroâtnostej i ee primeneniâ, Tome 52 (2007) no. 3, pp. 506-540. http://geodesic.mathdoc.fr/item/TVP_2007_52_3_a5/
[1] Acerbi C., “Spectral measures of risk: a coherent representation of subjective risk aversion”, J. Banking and Finance, 26 (2002), 1505–1518 | DOI
[2] Acerbi C., “Coherent representations of subjective risk aversion”, Risk Measures for the 21st Century, ed. G. Szegő, Wiley, New York, 2004, 147–207
[3] Acerbi C., Tasche D., “On the coherence of expected shortfall”, J. Banking and Finance, 26:7 (2002), 1487–1503 | DOI
[4] Artzner P., Delbaen F., Eber J.-M., Heath D., “Thinking coherently”, J. Risk, 10:11 (1997), 68–71
[5] Artzner P., Delbaen F., Eber J.-M., Heath D., “Coherent measures of risk”, Math. Finance, 9:3 (1999), 203–228 | DOI | MR | Zbl
[6] Bernardo A., Ledoit O., “Gain, loss, and asset pricing”, J. Political Economy, 108:1 (2000), 144–172 | DOI
[7] Björk T., Slinko I., Towards a general theory of good deal bounds, Individual presentations, 25.01.2005 http://www.newton.cam.ac.uk/webseminars/pg+ws/2005/
[8] Carlier G., Dana R. A., “Core of convex distortions of a probability”, J. Economic Theory, 113:2 (2003), 199–222 | DOI | MR | Zbl
[9] Carr P., Geman H., Madan D., “Pricing and hedging in incomplete markets”, J. Financial Economics, 62 (2001), 131–167 | DOI
[10] Carr P., Geman H., Madan D., “Pricing in incomplete markets: from absence of good deals to acceptable risk”, Risk Measures for the 21st Century, ed. G. Szegő, Wiley, 2004, 451–474
[11] Černý A., Hodges S., “The theory of good-deal pricing in financial markets”, Mathematical Finance — Bachelier Congress (Paris, 2000), eds. H. Geman et al., Springer, Berlin, 2001, 175–202 | MR
[12] Cheridito P., Delbaen F., Kupper M., Dynamic monetary risk measures for bounded discrete-time processes, arXiv:math/0410453 | MR
[13] Cherny A. S., General arbitrage pricing model: probability approach, http://mech.math.msu.su/~cherny
[14] Cherny A. S., General arbitrage pricing model: transaction costs, http://mech.math.msu.su/~cherny
[15] Chernyi A. S., Ravnovesie na osnove kogerentnykh mer riska, http://mech.math.msu.su/~cherny
[16] Cherny A. S., “Weighted V\@R and its properties”, Finance Stoch., 10:2 (2006), 367–393 | DOI | MR | Zbl
[17] Cochrane J. H., Saá-Requejo J., “Beyond arbitrage: good-deal asset price bounds in incomplete markets”, J. Political Economy, 108:1 (2000), 79–119 | DOI
[18] Cvitanić J., Karatzas I., “On dynamic measures of risk”, Finance Stoch., 3:4 (1999), 451–482 | DOI | MR | Zbl
[19] Cvitanić J., Pham H., Touzi N., “A closed-form solution to the problem of super-replication under transaction costs”, Finance Stoch., 3:1 (1999), 35–54 | DOI | MR | Zbl
[20] Dalang R. C., Morton A., Willinger W., “Equivalent martingale measures and no-arbitrage in stochastic securities market models”, Stochastics Stochastics Rep., 29:2 (1990), 185–201 | MR | Zbl
[21] Delbaen F., “Coherent risk measures on general probability spaces”, Advances in Finance Stochastics. Essays in Honor of Dieter Sondermann, eds. K. Sandmann, P. Schönbucher, Springer, Berlin, 2002, 1–37 | MR | Zbl
[22] Delbaen F., Coherent monetary utility functions. Pisa lecture notes, http://www.math.ethz.ch/~delbaen
[23] Delbaen F., Schachermayer W., “A general version of the fundamental theorem of asset pricing”, Math. Ann., 300:3 (1994), 463–520 | DOI | MR | Zbl
[24] Delbaen F., Schachermayer W., “The fundamental theorem of asset pricing for unbounded stochastic processes”, Math. Ann., 312:2 (1998), 215–250 | DOI | MR | Zbl
[25] Dempster M. A. H., Evstigneev I. V., Taksar M. I., “Asset pricing and hedging in financial markets with transaction costs: an approach based on the von Neumann–Gale model”, Ann. Finance, 2 (2006), 327–355 | DOI
[26] Denault M., “Coherent allocation of risk capital”, J. Risk, 4:1 (2001), 1–34 | DOI | MR
[27] Detlefsen K., Scandolo G., “Conditional and dynamic convex risk measures”, Finance Stoch., 9:4 (2005), 539–561 | DOI | MR | Zbl
[28] Dowd K., “Spectral risk measures”, Financial Engineering News, 42 (2005), 11–12
[29] Duffie D., Richardson H. R., “Mean-variance hedging in continuous time”, Ann. Appl. Probab., 1:1 (1991), 1–15 | DOI | MR | Zbl
[30] El Karoui N., “Les aspects probabilistes du contrôle stochastique”, Lecture Notes in Math., 876, 1981, 73–238 | MR
[31] Fischer T., “Risk capital allocation by coherent risk measures based on one-sided moments”, Insurance Math. Econom., 32:1 (2003), 135–146 | DOI | MR | Zbl
[32] Floret K., “Weakly compact sets”, Lecture Notes in Math., 801, 1980, 1–123 | MR
[33] Föllmer H., Leukert P., “Quantile hedging”, Finance Stoch., 3:3 (1999), 251–273 | DOI | MR | Zbl
[34] Föllmer H., Schied A., “Convex measures of risk and trading constraints”, Finance Stoch., 6:4 (2002), 429–447 | DOI | MR | Zbl
[35] Föllmer H., Schied A., “Robust preferences and convex measures of risk”, Advances in Finance Stoch. Essays in Honor of Dieter Sondermann, eds. K. Sandmann, P. Schönbucher, Springer, Berlin, 2002, 39–56 | MR | Zbl
[36] Föllmer H., Schied A., Stochastic Finance. An Introduction in Discrete Time, de Gruyter, Berlin, 2004, 459 pp. | MR | Zbl
[37] Harrison J. M., Kreps D. M., “Martingales and arbitrage in multiperiod securities markets”, J. Economic Theory, 20 (1979), 381–408 | DOI | MR | Zbl
[38] Harrison J. M., Pliska S. R., “Martingales and stochastic integrals in the theory of continuous trading”, Stochastic Process. Appl., 11:3 (1981), 215–260 | DOI | MR | Zbl
[39] Jacod J., Shiryaev A. N., “Local martingales and the fundamental asset pricing theorems in the discrete-time case”, Finance Stoch., 2:3 (1998), 259–273 | DOI | MR | Zbl
[40] Jaschke S., Küchler U., “Coherent risk measures and good deal bounds”, Finance Stoch., 5:2 (2001), 181–200 | DOI | MR | Zbl
[41] Jobert A., Rogers L. C. G., Pricing operators and dynamic convex risk measures, Preprint, Cambridge Univ., Cambridge, 2005; ; http://www.statslab.cam.ac.uk/~chrishttp://www.gloriamundi.org
[42] Jouini E., Kallal H., “Martingales and arbitrage in securities markets with transaction costs”, J. Economic Theory, 66:1 (1995), 178–197 | DOI | MR | Zbl
[43] Jouini E., Meddeb M., Touzi N., “Vector-valued coherent risk measures”, Finance Stoch., 8:4 (2004), 531–552 | DOI | MR | Zbl
[44] Kabanov Yu. M., Kramkov D. O., “Otsutstvie arbitrazha i ekvivalentnye martingalnye mery: novoe dokazatelstvo teoremy Kharrisona–Pliski”, Teoriya veroyatn. i ee primen., 39:3 (1994), 635–640 | MR | Zbl
[45] Kabanov Yu. M., Rásonyi M., Stricker C., “No-arbitrage criteria for financial markets with efficient friction”, Finance Stoch., 6:3 (2002), 371–382 | DOI | MR | Zbl
[46] Kabanov Yu. M., Stricker C., “A teacher's note on no-arbitrage criteria”, Lecture Notes in Math., 1755, 2001, 149–152 | MR | Zbl
[47] Kabanov Yu. M., Stricker C., “The Harrison–Pliska arbitrage pricing theorem under transaction costs”, J. Math. Econom., 35:2 (2001), 185–196 | DOI | MR | Zbl
[48] Kalkbrenner M., “An axiomatic approach to capital allocation”, Math. Finance, 15:3 (2005), 425–437 | DOI | MR
[49] Kusuoka S., “On law invariant coherent risk measures”, Adv. Math. Econom., 3 (2001), 83–95 | MR
[50] Larsen K., Pirvu T., Shreve S., Tütüncü R., “Satisfying convex risk limits by trading”, Finance Stoch., 9:2 (2005), 177–195 | DOI | MR | Zbl
[51] Leventhal S., Skorokhod A. V., “On the possibility of hedging options in the presence of transaction costs”, Ann. Appl. Probab., 7:2 (1997), 410–443 | DOI | MR
[52] Marrison C., The Fundamentals of Risk Measurement, McGraw Hill, New York, 2002
[53] Melnikov A. V., Nechaev M. L., “K voprosu o khedzhirovanii platezhnykh obyazatelstv v srednekvadraticheskom”, Teoriya veroyatn. i ee primen., 43:4 (1998), 672–691 | MR | Zbl
[54] Overbeck L., “Allocation of economic capital in loan portfolios”, Lecture Notes in Statist., 147, 1999, 1–17
[55] Riedel F., “Dynamic coherent risk measures”, Stochastic Process. Appl., 112:2 (2004), 185–200 | DOI | MR | Zbl
[56] Rogers L. C. G., “Equivalent martingale measures and no-arbitrage”, Stochastics Stochastics Rep., 51:1–2 (1994), 41–49 | MR | Zbl
[57] Roorda B., Schumacher J. M., Engwerda J., “Coherent acceptability measures in multiperiod models”, Math. Finance, 15:4 (2005), 589–612 | DOI | MR | Zbl
[58] Schachermayer W., “A Hilbert space proof of the fundamental theorem of asset pricing in finite discrete time”, Insurance Math. Econom., 11:4 (1992), 249–257 | DOI | MR | Zbl
[59] Schachermayer W., “The fundamental theorem of asset pricing under proportional transaction costs in finite discrete time”, Math. Finance, 14:1 (2004), 19–48 | DOI | MR | Zbl
[60] Schied A., “Risk measures and robust optimization problems”, Stoch. Models, 22:4 (2006), 753–831 | DOI | MR | Zbl
[61] Schweizer M., “Variance-optimal hedging in discrete time”, Math. Oper. Res., 20:1 (1995), 1–32 | DOI | MR | Zbl
[62] Schweizer M., “A guided tour through quadratic hedging approaches”, Option Pricing, Interest Rates, and Risk Management, eds. E. Jouini, M. Musiela, and J. Cvitanic, Cambridge, Univ. Press, Cambridge, 2001, 538–574 | MR | Zbl
[63] Sekine J., “Dynamic minimization of worst conditional expectation of shortfall”, Math. Finance, 14:4 (2004), 605–618 | DOI | MR | Zbl
[64] Shiryaev A. N., Osnovy stokhasticheskoi finansovoi matematiki, t. 1, 2, Fazis, M., 2004, 1017 pp.
[65] Soner H. M., Shreve S. E., Cvitanić J., “There is no nontrivial hedging portfolio for option pricing with transaction costs”, Ann. Appl. Probab., 5:2 (1995), 327–355 | DOI | MR | Zbl
[66] Staum J., “Fundamental theorems of asset pricing for good deal bounds”, Math. Finance, 14:2 (2004), 141–161 | DOI | MR | Zbl
[67] Stricker C., “Arbitrage et lois de martingale”, Ann. Inst. H. Poincaré, 26:3 (1990), 451–460 | MR | Zbl
[68] Szegő G., “On the (non)-acceptance of innovations”, Risk Measures for the 21st Century, eds. G. Szegő, Wiley, New York, 2004, 1–9
[69] Tasche D., “Expected shortfall and beyond”, J. Banking and Finance, 26 (2002), 1519–1533 | DOI | MR
[70] Yan J. A., “A new look at the fundamental theorem of asset pricing”, J. Korean Math. Society, 35:3 (1998), 659–673 | MR | Zbl