Pricing with coherent risk
Teoriâ veroâtnostej i ee primeneniâ, Tome 52 (2007) no. 3, pp. 506-540 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

This is the first of two papers dealing with applications of coherent risk measures to basic problems of financial mathematics. In this paper, we study applications to pricing in incomplete markets. We prove the fundamental theorem of asset pricing for the no good deals (NGD) pricing technique based on coherent risks. The model considered includes static and dynamic models as well as models with infinitely many assets, and models with transaction costs. In particular, we prove that in a dynamic model with proportional transaction costs the fair price interval converges to the fair price interval in the frictionless model as the coefficient of transaction costs tends to zero. Moreover, we study some problems in the “pure” theory of risk measures. In particular, we introduce the notion of a generator that opens the way for geometric constructions. Based on this notion, we give a simple geometric solution of the capital allocation problem.
Mots-clés : capital allocation, RAROC, tail V@R
Keywords: coherent risk measure, extreme measure, generator, no good deals, risk contribution, risk-neutral measure, support function, transaction costs, weighted V@R.
@article{TVP_2007_52_3_a5,
     author = {A. S. Cherny},
     title = {Pricing with coherent risk},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {506--540},
     year = {2007},
     volume = {52},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_2007_52_3_a5/}
}
TY  - JOUR
AU  - A. S. Cherny
TI  - Pricing with coherent risk
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 2007
SP  - 506
EP  - 540
VL  - 52
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TVP_2007_52_3_a5/
LA  - ru
ID  - TVP_2007_52_3_a5
ER  - 
%0 Journal Article
%A A. S. Cherny
%T Pricing with coherent risk
%J Teoriâ veroâtnostej i ee primeneniâ
%D 2007
%P 506-540
%V 52
%N 3
%U http://geodesic.mathdoc.fr/item/TVP_2007_52_3_a5/
%G ru
%F TVP_2007_52_3_a5
A. S. Cherny. Pricing with coherent risk. Teoriâ veroâtnostej i ee primeneniâ, Tome 52 (2007) no. 3, pp. 506-540. http://geodesic.mathdoc.fr/item/TVP_2007_52_3_a5/

[1] Acerbi C., “Spectral measures of risk: a coherent representation of subjective risk aversion”, J. Banking and Finance, 26 (2002), 1505–1518 | DOI

[2] Acerbi C., “Coherent representations of subjective risk aversion”, Risk Measures for the 21st Century, ed. G. Szegő, Wiley, New York, 2004, 147–207

[3] Acerbi C., Tasche D., “On the coherence of expected shortfall”, J. Banking and Finance, 26:7 (2002), 1487–1503 | DOI

[4] Artzner P., Delbaen F., Eber J.-M., Heath D., “Thinking coherently”, J. Risk, 10:11 (1997), 68–71

[5] Artzner P., Delbaen F., Eber J.-M., Heath D., “Coherent measures of risk”, Math. Finance, 9:3 (1999), 203–228 | DOI | MR | Zbl

[6] Bernardo A., Ledoit O., “Gain, loss, and asset pricing”, J. Political Economy, 108:1 (2000), 144–172 | DOI

[7] Björk T., Slinko I., Towards a general theory of good deal bounds, Individual presentations, 25.01.2005 http://www.newton.cam.ac.uk/webseminars/pg+ws/2005/

[8] Carlier G., Dana R. A., “Core of convex distortions of a probability”, J. Economic Theory, 113:2 (2003), 199–222 | DOI | MR | Zbl

[9] Carr P., Geman H., Madan D., “Pricing and hedging in incomplete markets”, J. Financial Economics, 62 (2001), 131–167 | DOI

[10] Carr P., Geman H., Madan D., “Pricing in incomplete markets: from absence of good deals to acceptable risk”, Risk Measures for the 21st Century, ed. G. Szegő, Wiley, 2004, 451–474

[11] Černý A., Hodges S., “The theory of good-deal pricing in financial markets”, Mathematical Finance — Bachelier Congress (Paris, 2000), eds. H. Geman et al., Springer, Berlin, 2001, 175–202 | MR

[12] Cheridito P., Delbaen F., Kupper M., Dynamic monetary risk measures for bounded discrete-time processes, arXiv:math/0410453 | MR

[13] Cherny A. S., General arbitrage pricing model: probability approach, http://mech.math.msu.su/~cherny

[14] Cherny A. S., General arbitrage pricing model: transaction costs, http://mech.math.msu.su/~cherny

[15] Chernyi A. S., Ravnovesie na osnove kogerentnykh mer riska, http://mech.math.msu.su/~cherny

[16] Cherny A. S., “Weighted V\@R and its properties”, Finance Stoch., 10:2 (2006), 367–393 | DOI | MR | Zbl

[17] Cochrane J. H., Saá-Requejo J., “Beyond arbitrage: good-deal asset price bounds in incomplete markets”, J. Political Economy, 108:1 (2000), 79–119 | DOI

[18] Cvitanić J., Karatzas I., “On dynamic measures of risk”, Finance Stoch., 3:4 (1999), 451–482 | DOI | MR | Zbl

[19] Cvitanić J., Pham H., Touzi N., “A closed-form solution to the problem of super-replication under transaction costs”, Finance Stoch., 3:1 (1999), 35–54 | DOI | MR | Zbl

[20] Dalang R. C., Morton A., Willinger W., “Equivalent martingale measures and no-arbitrage in stochastic securities market models”, Stochastics Stochastics Rep., 29:2 (1990), 185–201 | MR | Zbl

[21] Delbaen F., “Coherent risk measures on general probability spaces”, Advances in Finance Stochastics. Essays in Honor of Dieter Sondermann, eds. K. Sandmann, P. Schönbucher, Springer, Berlin, 2002, 1–37 | MR | Zbl

[22] Delbaen F., Coherent monetary utility functions. Pisa lecture notes, http://www.math.ethz.ch/~delbaen

[23] Delbaen F., Schachermayer W., “A general version of the fundamental theorem of asset pricing”, Math. Ann., 300:3 (1994), 463–520 | DOI | MR | Zbl

[24] Delbaen F., Schachermayer W., “The fundamental theorem of asset pricing for unbounded stochastic processes”, Math. Ann., 312:2 (1998), 215–250 | DOI | MR | Zbl

[25] Dempster M. A. H., Evstigneev I. V., Taksar M. I., “Asset pricing and hedging in financial markets with transaction costs: an approach based on the von Neumann–Gale model”, Ann. Finance, 2 (2006), 327–355 | DOI

[26] Denault M., “Coherent allocation of risk capital”, J. Risk, 4:1 (2001), 1–34 | DOI | MR

[27] Detlefsen K., Scandolo G., “Conditional and dynamic convex risk measures”, Finance Stoch., 9:4 (2005), 539–561 | DOI | MR | Zbl

[28] Dowd K., “Spectral risk measures”, Financial Engineering News, 42 (2005), 11–12

[29] Duffie D., Richardson H. R., “Mean-variance hedging in continuous time”, Ann. Appl. Probab., 1:1 (1991), 1–15 | DOI | MR | Zbl

[30] El Karoui N., “Les aspects probabilistes du contrôle stochastique”, Lecture Notes in Math., 876, 1981, 73–238 | MR

[31] Fischer T., “Risk capital allocation by coherent risk measures based on one-sided moments”, Insurance Math. Econom., 32:1 (2003), 135–146 | DOI | MR | Zbl

[32] Floret K., “Weakly compact sets”, Lecture Notes in Math., 801, 1980, 1–123 | MR

[33] Föllmer H., Leukert P., “Quantile hedging”, Finance Stoch., 3:3 (1999), 251–273 | DOI | MR | Zbl

[34] Föllmer H., Schied A., “Convex measures of risk and trading constraints”, Finance Stoch., 6:4 (2002), 429–447 | DOI | MR | Zbl

[35] Föllmer H., Schied A., “Robust preferences and convex measures of risk”, Advances in Finance Stoch. Essays in Honor of Dieter Sondermann, eds. K. Sandmann, P. Schönbucher, Springer, Berlin, 2002, 39–56 | MR | Zbl

[36] Föllmer H., Schied A., Stochastic Finance. An Introduction in Discrete Time, de Gruyter, Berlin, 2004, 459 pp. | MR | Zbl

[37] Harrison J. M., Kreps D. M., “Martingales and arbitrage in multiperiod securities markets”, J. Economic Theory, 20 (1979), 381–408 | DOI | MR | Zbl

[38] Harrison J. M., Pliska S. R., “Martingales and stochastic integrals in the theory of continuous trading”, Stochastic Process. Appl., 11:3 (1981), 215–260 | DOI | MR | Zbl

[39] Jacod J., Shiryaev A. N., “Local martingales and the fundamental asset pricing theorems in the discrete-time case”, Finance Stoch., 2:3 (1998), 259–273 | DOI | MR | Zbl

[40] Jaschke S., Küchler U., “Coherent risk measures and good deal bounds”, Finance Stoch., 5:2 (2001), 181–200 | DOI | MR | Zbl

[41] Jobert A., Rogers L. C. G., Pricing operators and dynamic convex risk measures, Preprint, Cambridge Univ., Cambridge, 2005; ; http://www.statslab.cam.ac.uk/~chrishttp://www.gloriamundi.org

[42] Jouini E., Kallal H., “Martingales and arbitrage in securities markets with transaction costs”, J. Economic Theory, 66:1 (1995), 178–197 | DOI | MR | Zbl

[43] Jouini E., Meddeb M., Touzi N., “Vector-valued coherent risk measures”, Finance Stoch., 8:4 (2004), 531–552 | DOI | MR | Zbl

[44] Kabanov Yu. M., Kramkov D. O., “Otsutstvie arbitrazha i ekvivalentnye martingalnye mery: novoe dokazatelstvo teoremy Kharrisona–Pliski”, Teoriya veroyatn. i ee primen., 39:3 (1994), 635–640 | MR | Zbl

[45] Kabanov Yu. M., Rásonyi M., Stricker C., “No-arbitrage criteria for financial markets with efficient friction”, Finance Stoch., 6:3 (2002), 371–382 | DOI | MR | Zbl

[46] Kabanov Yu. M., Stricker C., “A teacher's note on no-arbitrage criteria”, Lecture Notes in Math., 1755, 2001, 149–152 | MR | Zbl

[47] Kabanov Yu. M., Stricker C., “The Harrison–Pliska arbitrage pricing theorem under transaction costs”, J. Math. Econom., 35:2 (2001), 185–196 | DOI | MR | Zbl

[48] Kalkbrenner M., “An axiomatic approach to capital allocation”, Math. Finance, 15:3 (2005), 425–437 | DOI | MR

[49] Kusuoka S., “On law invariant coherent risk measures”, Adv. Math. Econom., 3 (2001), 83–95 | MR

[50] Larsen K., Pirvu T., Shreve S., Tütüncü R., “Satisfying convex risk limits by trading”, Finance Stoch., 9:2 (2005), 177–195 | DOI | MR | Zbl

[51] Leventhal S., Skorokhod A. V., “On the possibility of hedging options in the presence of transaction costs”, Ann. Appl. Probab., 7:2 (1997), 410–443 | DOI | MR

[52] Marrison C., The Fundamentals of Risk Measurement, McGraw Hill, New York, 2002

[53] Melnikov A. V., Nechaev M. L., “K voprosu o khedzhirovanii platezhnykh obyazatelstv v srednekvadraticheskom”, Teoriya veroyatn. i ee primen., 43:4 (1998), 672–691 | MR | Zbl

[54] Overbeck L., “Allocation of economic capital in loan portfolios”, Lecture Notes in Statist., 147, 1999, 1–17

[55] Riedel F., “Dynamic coherent risk measures”, Stochastic Process. Appl., 112:2 (2004), 185–200 | DOI | MR | Zbl

[56] Rogers L. C. G., “Equivalent martingale measures and no-arbitrage”, Stochastics Stochastics Rep., 51:1–2 (1994), 41–49 | MR | Zbl

[57] Roorda B., Schumacher J. M., Engwerda J., “Coherent acceptability measures in multiperiod models”, Math. Finance, 15:4 (2005), 589–612 | DOI | MR | Zbl

[58] Schachermayer W., “A Hilbert space proof of the fundamental theorem of asset pricing in finite discrete time”, Insurance Math. Econom., 11:4 (1992), 249–257 | DOI | MR | Zbl

[59] Schachermayer W., “The fundamental theorem of asset pricing under proportional transaction costs in finite discrete time”, Math. Finance, 14:1 (2004), 19–48 | DOI | MR | Zbl

[60] Schied A., “Risk measures and robust optimization problems”, Stoch. Models, 22:4 (2006), 753–831 | DOI | MR | Zbl

[61] Schweizer M., “Variance-optimal hedging in discrete time”, Math. Oper. Res., 20:1 (1995), 1–32 | DOI | MR | Zbl

[62] Schweizer M., “A guided tour through quadratic hedging approaches”, Option Pricing, Interest Rates, and Risk Management, eds. E. Jouini, M. Musiela, and J. Cvitanic, Cambridge, Univ. Press, Cambridge, 2001, 538–574 | MR | Zbl

[63] Sekine J., “Dynamic minimization of worst conditional expectation of shortfall”, Math. Finance, 14:4 (2004), 605–618 | DOI | MR | Zbl

[64] Shiryaev A. N., Osnovy stokhasticheskoi finansovoi matematiki, t. 1, 2, Fazis, M., 2004, 1017 pp.

[65] Soner H. M., Shreve S. E., Cvitanić J., “There is no nontrivial hedging portfolio for option pricing with transaction costs”, Ann. Appl. Probab., 5:2 (1995), 327–355 | DOI | MR | Zbl

[66] Staum J., “Fundamental theorems of asset pricing for good deal bounds”, Math. Finance, 14:2 (2004), 141–161 | DOI | MR | Zbl

[67] Stricker C., “Arbitrage et lois de martingale”, Ann. Inst. H. Poincaré, 26:3 (1990), 451–460 | MR | Zbl

[68] Szegő G., “On the (non)-acceptance of innovations”, Risk Measures for the 21st Century, eds. G. Szegő, Wiley, New York, 2004, 1–9

[69] Tasche D., “Expected shortfall and beyond”, J. Banking and Finance, 26 (2002), 1519–1533 | DOI | MR

[70] Yan J. A., “A new look at the fundamental theorem of asset pricing”, J. Korean Math. Society, 35:3 (1998), 659–673 | MR | Zbl