Keywords: finitely additive set function.
@article{TVP_2007_52_3_a3,
author = {A. A. Gushchin},
title = {On extension of $f$-divergence},
journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
pages = {468--489},
year = {2007},
volume = {52},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TVP_2007_52_3_a3/}
}
A. A. Gushchin. On extension of $f$-divergence. Teoriâ veroâtnostej i ee primeneniâ, Tome 52 (2007) no. 3, pp. 468-489. http://geodesic.mathdoc.fr/item/TVP_2007_52_3_a3/
[1] Alekseev V. M., Tikhomirov V. M., Fomin C. V., Optimalnoe upravlenie, Fizmatlit, M., 2005, 384 pp.
[2] Bednarski T., “Binary experiments, minimax tests and 2-alternating capacities”, Ann. Statist., 10:1 (1982), 226–232 | DOI | MR | Zbl
[3] Bogachev V. I., Osnovy teorii mery, t. 1, NITs “Regulyarnaya i khaoticheskaya dinamika”, M.–Izhevsk, 2006, 583 pp.
[4] Broniatowski M., Keziou A., “Minimization of $\phi$-divergences on sets of signed measures”, Studia Sci. Math. Hungar., 43:4 (2006), 403–442 | MR | Zbl
[5] Csiszár I., “Eine informationstheoretische Ungleichung und ihre Anwendung auf den Beweis der Ergodizität von Markoffschen Ketten”, Magyar Tud. Akad. Mat. Kutató Int. Közl., 8 (1963), 85–108 | MR | Zbl
[6] Csiszár I., “$I$-divergence geometry of probability distributions and minimization problems”, Ann. Probab., 3:1 (1975), 146–158 | DOI | MR | Zbl
[7] Csiszár I., Gamboa F., Gassiat E., “MEM pixel correlated solutions for generalized moment and interpolation problems”, IEEE Trans. Inform. Theory, 45:7 (1999), 2253–2270 | DOI | MR | Zbl
[8] Csiszár I., Tusnády G., “Information geometry and alternating minimization procedures”, Statist. Decisions, suppl. 1 (1984), 205–237 | MR
[9] Cvitanić J., Schachermayer W., Wang H., “Utility maximization in incomplete markets with random endowment”, Finance Stoch., 5:2 (2001), 259–272 | DOI | MR | Zbl
[10] Delbaen F., Schachermayer W., “A general version of the fundamental theorem of asset pricing”, Math. Ann., 300:3 (1994), 463–520 | DOI | MR | Zbl
[11] Ekland I., Temam R., Vypuklyi analiz i variatsionnye problemy, Mir, M., 1979, 399 pp. | MR
[12] Föllmer H., Gundel A., “Robust projections in the class of martingale measures”, Illinois J. Math., 50:2 (2006), 439–472 | MR | Zbl
[13] Goll T., Rüschendorf L., “Minimax and minimal distance martingale measures and their relationship to portfolio optimization”, Finance Stoch., 5:4 (2001), 557–581 | DOI | MR | Zbl
[14] Gundel A., “Robust utility maximization for complete and incomplete market models”, Finance Stoch., 9:2 (2005), 151–176 | DOI | MR | Zbl
[15] Győrfi L., Nemetz T., “$f$-dissimilarity: a general class of separation measures of several probability measures”, Topics in Information Theory (Second Colloq., Keszthely, 1975), Colloq. Math. Soc. János Bolyai, 16, North-Holland, Amsterdam, 1977, 309–321 | MR
[16] Györfi L., Nemetz T., “$f$-dissimilarity: a generalization of the affinity of several distributions”, Ann. Inst. Statist. Math., 30:1 (1978), 105–113 | DOI | MR | Zbl
[17] Guschin A. A., “$f$-divergentsiya konechno-additivnykh mer”, Obozr. prikl. promyshl. matem., 12:3 (2005), 657–658
[18] Guschin A. A., Mordetski E., “Granitsy tsen optsionov dlya semimartingalnykh modelei rynka”, Tr. MIAN, 237, 2002, 80–122
[19] Huber P. J., Strassen V., “Minimax tests and the Neyman–Pearson lemma for capacities”, Ann. Statist., 1:2 (1973), 251–263 ; correction: Ann. Statist., 2:1 (1974), 223–224 | DOI | MR | Zbl | DOI | MR | Zbl
[20] Lembcke J., “The necessity of strongly subadditive capacities for Neyman–Pearson minimax tests”, Monatsh. Math., 105:2 (1988), 113–126 | DOI | MR | Zbl
[21] Léonard C., “Minimizers of energy functionals”, Acta Math. Hungar., 93:4 (2001), 281–325 | DOI | MR | Zbl
[22] Liese F., “On the existence of $f$-projections”, Topics in Information Theory (Second Colloq., Keszthely, 1975), Colloq. Math. Soc. János Bolyai, 16, North-Holland, Amsterdam, 1977, 431–446 | MR
[23] Liese F., Vajda I., Convex Statistical Distances, Teubner, Leipzig, 1987, 224 pp. | MR | Zbl
[24] Nevë Zh., Matematicheskie osnovy teorii veroyatnostei, Mir, M., 1969, 309 pp. | MR
[25] Rockafellar R. T., “Integrals which are convex functionals”, Pacific J. Math., 24:3 (1968), 525–539 | MR | Zbl
[26] Rockafellar R. T., “Integrals which are convex functionals, II”, Pacific J. Math., 39:2 (1971), 439–469 | MR | Zbl
[27] Rokafellar R., Vypuklyi analiz, Mir, M., 1973, 469 pp.
[28] Rüschendorf L., “On the minimum discrimination information theorem”, Statist. Decisions, suppl. 1 (1984), 263–283 | MR
[29] Schied A., Wu C.-T., “Duality theory for optimal investments under model uncertainty”, Statist. Decisions, 23:3 (2005), 199–217 | DOI | MR | Zbl
[30] Yosida K., Hewitt E., “Finitely additive measures”, Trans. Amer. Math. Soc., 72:1 (1952), 46–66 | DOI | MR | Zbl