On extension of $f$-divergence
Teoriâ veroâtnostej i ee primeneniâ, Tome 52 (2007) no. 3, pp. 468-489 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

For a lower semicontinuous convex function $f:\mathbf{R}\to\mathbf{R}\cup\{+\infty\}$, $\mathrm{dom}\,f\subseteq\mathbf{R}_+$, we give a definition and study properties of the $f$-divergence of finitely additive set functions $\mu$ and $\nu$ given on a measurable space $(\Omega,\mathscr{F})$. If $f$ is finite on $(0,+\infty)$ and $\mu$ and $\nu$ are probability measures, our definition is equivalent to the classical definition of the $f$-divergence introduced by Csiszár. As an application, we obtain a result on attaining the minimum by the $f$-divergence over a set $\mathscr{Z}$ of pairs of probability measures.
Mots-clés : $f$-divergence
Keywords: finitely additive set function.
@article{TVP_2007_52_3_a3,
     author = {A. A. Gushchin},
     title = {On extension of $f$-divergence},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {468--489},
     year = {2007},
     volume = {52},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_2007_52_3_a3/}
}
TY  - JOUR
AU  - A. A. Gushchin
TI  - On extension of $f$-divergence
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 2007
SP  - 468
EP  - 489
VL  - 52
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TVP_2007_52_3_a3/
LA  - ru
ID  - TVP_2007_52_3_a3
ER  - 
%0 Journal Article
%A A. A. Gushchin
%T On extension of $f$-divergence
%J Teoriâ veroâtnostej i ee primeneniâ
%D 2007
%P 468-489
%V 52
%N 3
%U http://geodesic.mathdoc.fr/item/TVP_2007_52_3_a3/
%G ru
%F TVP_2007_52_3_a3
A. A. Gushchin. On extension of $f$-divergence. Teoriâ veroâtnostej i ee primeneniâ, Tome 52 (2007) no. 3, pp. 468-489. http://geodesic.mathdoc.fr/item/TVP_2007_52_3_a3/

[1] Alekseev V. M., Tikhomirov V. M., Fomin C. V., Optimalnoe upravlenie, Fizmatlit, M., 2005, 384 pp.

[2] Bednarski T., “Binary experiments, minimax tests and 2-alternating capacities”, Ann. Statist., 10:1 (1982), 226–232 | DOI | MR | Zbl

[3] Bogachev V. I., Osnovy teorii mery, t. 1, NITs “Regulyarnaya i khaoticheskaya dinamika”, M.–Izhevsk, 2006, 583 pp.

[4] Broniatowski M., Keziou A., “Minimization of $\phi$-divergences on sets of signed measures”, Studia Sci. Math. Hungar., 43:4 (2006), 403–442 | MR | Zbl

[5] Csiszár I., “Eine informationstheoretische Ungleichung und ihre Anwendung auf den Beweis der Ergodizität von Markoffschen Ketten”, Magyar Tud. Akad. Mat. Kutató Int. Közl., 8 (1963), 85–108 | MR | Zbl

[6] Csiszár I., “$I$-divergence geometry of probability distributions and minimization problems”, Ann. Probab., 3:1 (1975), 146–158 | DOI | MR | Zbl

[7] Csiszár I., Gamboa F., Gassiat E., “MEM pixel correlated solutions for generalized moment and interpolation problems”, IEEE Trans. Inform. Theory, 45:7 (1999), 2253–2270 | DOI | MR | Zbl

[8] Csiszár I., Tusnády G., “Information geometry and alternating minimization procedures”, Statist. Decisions, suppl. 1 (1984), 205–237 | MR

[9] Cvitanić J., Schachermayer W., Wang H., “Utility maximization in incomplete markets with random endowment”, Finance Stoch., 5:2 (2001), 259–272 | DOI | MR | Zbl

[10] Delbaen F., Schachermayer W., “A general version of the fundamental theorem of asset pricing”, Math. Ann., 300:3 (1994), 463–520 | DOI | MR | Zbl

[11] Ekland I., Temam R., Vypuklyi analiz i variatsionnye problemy, Mir, M., 1979, 399 pp. | MR

[12] Föllmer H., Gundel A., “Robust projections in the class of martingale measures”, Illinois J. Math., 50:2 (2006), 439–472 | MR | Zbl

[13] Goll T., Rüschendorf L., “Minimax and minimal distance martingale measures and their relationship to portfolio optimization”, Finance Stoch., 5:4 (2001), 557–581 | DOI | MR | Zbl

[14] Gundel A., “Robust utility maximization for complete and incomplete market models”, Finance Stoch., 9:2 (2005), 151–176 | DOI | MR | Zbl

[15] Győrfi L., Nemetz T., “$f$-dissimilarity: a general class of separation measures of several probability measures”, Topics in Information Theory (Second Colloq., Keszthely, 1975), Colloq. Math. Soc. János Bolyai, 16, North-Holland, Amsterdam, 1977, 309–321 | MR

[16] Györfi L., Nemetz T., “$f$-dissimilarity: a generalization of the affinity of several distributions”, Ann. Inst. Statist. Math., 30:1 (1978), 105–113 | DOI | MR | Zbl

[17] Guschin A. A., “$f$-divergentsiya konechno-additivnykh mer”, Obozr. prikl. promyshl. matem., 12:3 (2005), 657–658

[18] Guschin A. A., Mordetski E., “Granitsy tsen optsionov dlya semimartingalnykh modelei rynka”, Tr. MIAN, 237, 2002, 80–122

[19] Huber P. J., Strassen V., “Minimax tests and the Neyman–Pearson lemma for capacities”, Ann. Statist., 1:2 (1973), 251–263 ; correction: Ann. Statist., 2:1 (1974), 223–224 | DOI | MR | Zbl | DOI | MR | Zbl

[20] Lembcke J., “The necessity of strongly subadditive capacities for Neyman–Pearson minimax tests”, Monatsh. Math., 105:2 (1988), 113–126 | DOI | MR | Zbl

[21] Léonard C., “Minimizers of energy functionals”, Acta Math. Hungar., 93:4 (2001), 281–325 | DOI | MR | Zbl

[22] Liese F., “On the existence of $f$-projections”, Topics in Information Theory (Second Colloq., Keszthely, 1975), Colloq. Math. Soc. János Bolyai, 16, North-Holland, Amsterdam, 1977, 431–446 | MR

[23] Liese F., Vajda I., Convex Statistical Distances, Teubner, Leipzig, 1987, 224 pp. | MR | Zbl

[24] Nevë Zh., Matematicheskie osnovy teorii veroyatnostei, Mir, M., 1969, 309 pp. | MR

[25] Rockafellar R. T., “Integrals which are convex functionals”, Pacific J. Math., 24:3 (1968), 525–539 | MR | Zbl

[26] Rockafellar R. T., “Integrals which are convex functionals, II”, Pacific J. Math., 39:2 (1971), 439–469 | MR | Zbl

[27] Rokafellar R., Vypuklyi analiz, Mir, M., 1973, 469 pp.

[28] Rüschendorf L., “On the minimum discrimination information theorem”, Statist. Decisions, suppl. 1 (1984), 263–283 | MR

[29] Schied A., Wu C.-T., “Duality theory for optimal investments under model uncertainty”, Statist. Decisions, 23:3 (2005), 199–217 | DOI | MR | Zbl

[30] Yosida K., Hewitt E., “Finitely additive measures”, Trans. Amer. Math. Soc., 72:1 (1952), 46–66 | DOI | MR | Zbl