Scaled entropy of filtrations of $\sigma$-fields
Teoriâ veroâtnostej i ee primeneniâ, Tome 52 (2007) no. 3, pp. 446-467 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We study the notion of the scaled entropy of a filtration of $\sigma$-fields (i.e., decreasing sequence of $\sigma$-fields) introduced in [A. M. Vershik, Russian Math. Surveys, 55 (2000), pp. 677–733]. We suggest a method for computing this entropy for the sequence of $\sigma$-fields of pasts of a Markov process determined by a random walk over the trajectories of a Bernoulli action of a commutative or nilpotent countable group. Since the scaled entropy is a metric invariant of the filtration, it follows that the sequences of $\sigma$-fields of pasts of random walks over the trajectories of Bernoulli actions of lattices (groups $\mathbf{Z}^d$) are metrically nonisomorphic for different dimensions $d$, and for the same $d$ but different values of the entropy of the Bernoulli scheme. We give a brief survey of the metric theory of filtrations; in particular, we formulate the standardness criterion and describe its connections with the scaled entropy and the notion of a tower of measures.
Mots-clés : filtration
Keywords: $\sigma$-field of pasts, scaled entropy, random walks.
@article{TVP_2007_52_3_a2,
     author = {A. M. Vershik and A. D. Gorbul'skii},
     title = {Scaled entropy of filtrations of $\sigma$-fields},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {446--467},
     year = {2007},
     volume = {52},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_2007_52_3_a2/}
}
TY  - JOUR
AU  - A. M. Vershik
AU  - A. D. Gorbul'skii
TI  - Scaled entropy of filtrations of $\sigma$-fields
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 2007
SP  - 446
EP  - 467
VL  - 52
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TVP_2007_52_3_a2/
LA  - ru
ID  - TVP_2007_52_3_a2
ER  - 
%0 Journal Article
%A A. M. Vershik
%A A. D. Gorbul'skii
%T Scaled entropy of filtrations of $\sigma$-fields
%J Teoriâ veroâtnostej i ee primeneniâ
%D 2007
%P 446-467
%V 52
%N 3
%U http://geodesic.mathdoc.fr/item/TVP_2007_52_3_a2/
%G ru
%F TVP_2007_52_3_a2
A. M. Vershik; A. D. Gorbul'skii. Scaled entropy of filtrations of $\sigma$-fields. Teoriâ veroâtnostej i ee primeneniâ, Tome 52 (2007) no. 3, pp. 446-467. http://geodesic.mathdoc.fr/item/TVP_2007_52_3_a2/

[1] Vershik A. M., “Ubyvayuschie posledovatelnosti izmerimykh razbienii”, Dokl. AN SSSR, 193:4 (1970), 748–751 | Zbl

[2] Vershik A. M., “Kontinuum poparno neizomorfnykh diadicheskikh posledovatelnostei”, Funkts. analiz i ego pril., 5:3 (1971), 16–18 | MR | Zbl

[3] Vershik A. M., Approksimatsiya v teorii mery, Diss. $\dots$ dokt. fiz.-matem. nauk, LGU, L., 1973, 302 pp.

[4] Vershik A. M., “Teoriya ubyvayuschikh posledovatelnostei izmerimykh razbienii”, Algebra i analiz, 6:4 (1994), 1–68 | MR | Zbl

[5] Vershik A. M., “Metrika Kantorovicha: nachalnaya istoriya i maloizvestnye primeneniya”, Zapiski nauch. sem. POMI, 312, 2004, 69–85 | MR | Zbl

[6] Vershik A. M., “Dinamicheskaya teoriya rosta v gruppakh: entropiya, granitsy, primery”, Uspekhi matem. nauk, 55:4(334) (2000), 59–128 | MR | Zbl

[7] Vershik A. M., “Chetyre opredeleniya shkaly avtomorfizma”, Funkts. analiz. i ego pril., 7:3 (1973), 1–17 | MR | Zbl

[8] Stepin A. M., “Ob entropiinom invariante ubyvayuschikh posledovatelnostei izmerimykh razbienii”, Funkts. analiz i ego pril., 5:3 (1971), 80–84 | MR | Zbl

[9] Gorbulskii A. D., “Ob odnom svoistve entropii ubyvayuschei posledovatelnosti izmerimykh razbienii”, Zapiski nauch. sem. POMI, 256, 1999, 19–24 | MR

[10] Gorbulskii A. D., “Vzaimosvyaz raznykh opredelenii entropii ubyvayuschikh posledovatelnostei razbienii, skeiling”, Zapiski nauch. sem. POMI, 283, 2001, 50–62 | MR

[11] Gorbulskii A. D., “Primer interpolyatsii standartnoi posledovatelnosti izmerimykh razbienii s bolshoi skeilingovoi entropiei”, Zapiski nauch. sem. POMI, 292, 2002, 5–10 | MR

[12] Gorbulskii A. D., “$\sigma$-Algebra proshlykh sluchainogo bluzhdaniya po orbitam bernullievskogo deistviya gruppy $Z^d$”, Zapiski nauch. sem. POMI, 325, 2005, 103–112 | MR

[13] Heicklen D., “Entropy and $r$ equivalence”, Ergodic Theory Dynam. Systems, 18:5 (1998), 1139–1157 | DOI | MR | Zbl

[14] Heicklen D., Hoffman C., “$T,T^{-1}$ is not standard”, Ergodic Theory Dynam. Systems, 18:4 (1998), 875–878 | DOI | MR | Zbl

[15] Hoffman C., Rudolph D., “A dyadic endomorphism which is Bernoulli but not standard”, Israel J. Math., 130 (2002), 365–379 | DOI | MR | Zbl

[16] Hoffman C., Rudolph D., “Uniform endomorphisms which are isomorphic to a Bernoulli shift”, Ann. of Math., 156:1 (2002), 79–101 | DOI | MR | Zbl

[17] Heicklen D., Hoffman C., Rudolph D., “Entropy and dyadic equivalence of random walks on a random scenery”, Adv. Math., 156:2 (2000), 157–179 | DOI | MR | Zbl

[18] Kalikow S. A., “$T,T^{-1}$ transformation is not loosely Bernoulli”, Ann. Math., 115:2 (1982), 393–409 | DOI | MR | Zbl

[19] Feldman J., Rudolph D. J., “Standardness of sequences of $\sigma$-fields given by certain endomorphisms”, Fund. Math., 157:2–3 (1998), 175–189 | MR | Zbl

[20] Marton K., Shields P., “How many future measures can there be?”, Ergodic Theory Dynam. Systems, 22:1 (2002), 257–280 | DOI | MR | Zbl

[21] Bressaud X., Maass A., Martinez S., San Martin J., “Stationary processes whose filtrations are standard”, Ann. Probab., 34:4 (2006), 1589–1600 | DOI | MR | Zbl

[22] Dubins L., Feldman J., Smorodinsky M., Tsirelson B., “Decreasing sequences of $\sigma$-fields and a measure change for Brownian motion”, Ann. Probab., 24:2 (1996), 882–904 | DOI | MR | Zbl

[23] Den Hollander F., Steif J., “Random walk in random scenery: A survey of some recent results”, Dynamics and Stochastics: Festschrift in honor of M. S. Keane, IMS Lecture Notes Monogr. Ser., 48, eds. D. Denteneer, F. Den Hollander, and E. Verbitskiy, IMS, Hayward, 2006, 53–65 | MR | Zbl

[24] Émery M., “Espaces probabilisés filtrés: de la théorie de Vershik au mouvement brownien, via des idées de Tsirelson”, Astérisque, no 282, 2002, 63–83 | MR

[25] Rokhlin V. A., “Ob osnovnykh ponyatiyakh teorii mery”, Matem. sb., 25(67):1 (1949), 107–150 | Zbl

[26] Rokhlin V. A., “Lektsii po entropiinoi teorii preobrazovanii, sokhranyayuschikh meru”, Uspekhi matem. nauk, 22:5 (1967), 3–56 | Zbl

[27] Kushnirenko A. G., “O metricheskikh invariantakh tipa entropii”, Uspekhi matem. nauk, 22:5(137) (1967), 57–65 | MR | Zbl

[28] Kantorovich L. V., “O peremeschenii mass”, Dokl. AN SSSR, 37:7–8 (1942), 227–229

[29] Parry W., “Automorphisms of the Bernoulli endomorphism and a class of skew-products”, Ergodic Theory Dynam. Systems, 16:3 (1996), 519–529 | DOI | MR | Zbl

[30] Crepel P., Raugi A., “Théorème central limite sur les groupes nilpotents”, Ann. Inst. H. Poincaré B, 14:2 (1978), 145–164 | MR | Zbl