On the normal approximation to symmetric binomial distributions
Teoriâ veroâtnostej i ee primeneniâ, Tome 52 (2007) no. 3, pp. 610-617
Cet article a éte moissonné depuis la source Math-Net.Ru
The optimal constant over the square root of $n$ error bound in the central limit theorem for distribution functions of sums of independent symmetric Bernoulli random variables is $1/\sqrt{2\pi n}$.
Keywords:
central limit theorem, optimal error bound, symmetric Bernoulli variables.
Mots-clés : binomial distribution
Mots-clés : binomial distribution
@article{TVP_2007_52_3_a11,
author = {Ch. Hipp and L. Mattner},
title = {On the normal approximation to symmetric binomial distributions},
journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
pages = {610--617},
year = {2007},
volume = {52},
number = {3},
language = {en},
url = {http://geodesic.mathdoc.fr/item/TVP_2007_52_3_a11/}
}
Ch. Hipp; L. Mattner. On the normal approximation to symmetric binomial distributions. Teoriâ veroâtnostej i ee primeneniâ, Tome 52 (2007) no. 3, pp. 610-617. http://geodesic.mathdoc.fr/item/TVP_2007_52_3_a11/
[1] Bretagnolle J., Massart P., “Hungarian constructions from the nonasymptotic viewpoint”, Ann. Probab., 17:1 (1989), 239–256 | DOI | MR | Zbl
[2] Esseen C. G., “A moment inequality with an application to the central limit theorem”, Skand. Aktuarietidskr., 39 (1956), 160–170 | MR
[3] Everett C. J., “Inequalities for the Wallis product”, Math. Mag., 43 (1970), 30–33 | MR | Zbl
[4] Massart P., “Tusnady's lemma, 24 years later”, Ann. Inst. H. Poincaré, 38:6 (2002), 991–1007 | DOI | MR | Zbl