On the normal approximation to symmetric binomial distributions
Teoriâ veroâtnostej i ee primeneniâ, Tome 52 (2007) no. 3, pp. 610-617 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The optimal constant over the square root of $n$ error bound in the central limit theorem for distribution functions of sums of independent symmetric Bernoulli random variables is $1/\sqrt{2\pi n}$.
Keywords: central limit theorem, optimal error bound, symmetric Bernoulli variables.
Mots-clés : binomial distribution
@article{TVP_2007_52_3_a11,
     author = {Ch. Hipp and L. Mattner},
     title = {On the normal approximation to symmetric binomial distributions},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {610--617},
     year = {2007},
     volume = {52},
     number = {3},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TVP_2007_52_3_a11/}
}
TY  - JOUR
AU  - Ch. Hipp
AU  - L. Mattner
TI  - On the normal approximation to symmetric binomial distributions
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 2007
SP  - 610
EP  - 617
VL  - 52
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TVP_2007_52_3_a11/
LA  - en
ID  - TVP_2007_52_3_a11
ER  - 
%0 Journal Article
%A Ch. Hipp
%A L. Mattner
%T On the normal approximation to symmetric binomial distributions
%J Teoriâ veroâtnostej i ee primeneniâ
%D 2007
%P 610-617
%V 52
%N 3
%U http://geodesic.mathdoc.fr/item/TVP_2007_52_3_a11/
%G en
%F TVP_2007_52_3_a11
Ch. Hipp; L. Mattner. On the normal approximation to symmetric binomial distributions. Teoriâ veroâtnostej i ee primeneniâ, Tome 52 (2007) no. 3, pp. 610-617. http://geodesic.mathdoc.fr/item/TVP_2007_52_3_a11/

[1] Bretagnolle J., Massart P., “Hungarian constructions from the nonasymptotic viewpoint”, Ann. Probab., 17:1 (1989), 239–256 | DOI | MR | Zbl

[2] Esseen C. G., “A moment inequality with an application to the central limit theorem”, Skand. Aktuarietidskr., 39 (1956), 160–170 | MR

[3] Everett C. J., “Inequalities for the Wallis product”, Math. Mag., 43 (1970), 30–33 | MR | Zbl

[4] Massart P., “Tusnady's lemma, 24 years later”, Ann. Inst. H. Poincaré, 38:6 (2002), 991–1007 | DOI | MR | Zbl