On the polynomial analogue of the Chebyshev expansion
Teoriâ veroâtnostej i ee primeneniâ, Tome 52 (2007) no. 3, pp. 603-610 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

This paper proposes analogues of Chebyshev–Hermite polynomials for multidimensional spaces. These polynomials are polylinear functionals, which can be obtained by differentiating with respect to the Fréchet functions connected with densities of normal laws. It is shown how one can construct asymptotic expansions in the central limit theorem in the multidimensional case with the help of these polynomials.
Keywords: Chebyshev–Hermite polynomials, polylinear functionals, asymptotic expansions, central limit theorem
Mots-clés : polynomial distributions.
@article{TVP_2007_52_3_a10,
     author = {V. V. Senatov},
     title = {On the polynomial analogue of the {Chebyshev} expansion},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {603--610},
     year = {2007},
     volume = {52},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_2007_52_3_a10/}
}
TY  - JOUR
AU  - V. V. Senatov
TI  - On the polynomial analogue of the Chebyshev expansion
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 2007
SP  - 603
EP  - 610
VL  - 52
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TVP_2007_52_3_a10/
LA  - ru
ID  - TVP_2007_52_3_a10
ER  - 
%0 Journal Article
%A V. V. Senatov
%T On the polynomial analogue of the Chebyshev expansion
%J Teoriâ veroâtnostej i ee primeneniâ
%D 2007
%P 603-610
%V 52
%N 3
%U http://geodesic.mathdoc.fr/item/TVP_2007_52_3_a10/
%G ru
%F TVP_2007_52_3_a10
V. V. Senatov. On the polynomial analogue of the Chebyshev expansion. Teoriâ veroâtnostej i ee primeneniâ, Tome 52 (2007) no. 3, pp. 603-610. http://geodesic.mathdoc.fr/item/TVP_2007_52_3_a10/

[1] Gnedenko B. V., Kolmogorov A. N., Predelnye raspredeleniya dlya summ nezavisimykh sluchainykh velichin, Gostekhizdat, M.–L., 1949, 264 pp. | MR

[2] Cramér H., “On the composition of elementary errors. I: Mathematical deductions; II: Statistical Applications”, Skand. Actuarietidskrift, 11 (1928), 13–74 ; 141–180 | Zbl

[3] Petrov V. V., Summy nezavisimykh sluchainykh velichin, Nauka, M., 1972, 414 pp. | MR

[4] Senatov V. V., “Ob asimptoticheskikh razlozheniyakh v tsentralnoi predelnoi teoreme s yavnymi otsenkam ostatochnykh chlenov”, Teoriya veroyatn. i ee premen., 51:4 (2006), 810–816 | MR

[5] Senatov V. V., “Kachestvennye effekty v otsenkakh skorosti skhodimosti v tsentralnoi predelnoi teoreme v mnogomernykh prostranstvakh”, Tr. MIAN, 215, 1997, 3–239