Critical Galton–Watson process: The maximum of total progenies within a large window
Teoriâ veroâtnostej i ee primeneniâ, Tome 52 (2007) no. 3, pp. 419-445 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Consider a critical Galton–Watson process $Z=\{Z_n:n=0,1,\dots\}$ of index $1+\alpha$, $\alpha\in(0,1]$. Let $S_k(j)$ denote the sum of the $Z_{n}$ with $n$ in the window $[k,\dots,k+j)$ and let $M_{m}(j)$ be the maximum of the $S_{k}(j)$ with $k$ moving in $[0,m-j]$. We describe the asymptotic behavior of the expectation $\mathbf{E}M_m(j)$ if the window width $j=j_{m}$ is such that $j/m\to\eta\in$ $[0,1]$ as $m\uparrow\infty$. This will be achieved via establishing the asymptotic behavior of the tail of the distribution of the random variable $M_{\infty}(j)$.
Keywords: branching of index one plus alpha, limit theorem, conditional invariance principle, tail asymptotics, moving window, maximal total progeny, lower deviation probabilities.
@article{TVP_2007_52_3_a1,
     author = {V. A. Vatutin and V. I. Vakhtel' and K. Fleischmann},
     title = {Critical {Galton{\textendash}Watson} process: {The} maximum of total progenies within a large window},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {419--445},
     year = {2007},
     volume = {52},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_2007_52_3_a1/}
}
TY  - JOUR
AU  - V. A. Vatutin
AU  - V. I. Vakhtel'
AU  - K. Fleischmann
TI  - Critical Galton–Watson process: The maximum of total progenies within a large window
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 2007
SP  - 419
EP  - 445
VL  - 52
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TVP_2007_52_3_a1/
LA  - ru
ID  - TVP_2007_52_3_a1
ER  - 
%0 Journal Article
%A V. A. Vatutin
%A V. I. Vakhtel'
%A K. Fleischmann
%T Critical Galton–Watson process: The maximum of total progenies within a large window
%J Teoriâ veroâtnostej i ee primeneniâ
%D 2007
%P 419-445
%V 52
%N 3
%U http://geodesic.mathdoc.fr/item/TVP_2007_52_3_a1/
%G ru
%F TVP_2007_52_3_a1
V. A. Vatutin; V. I. Vakhtel'; K. Fleischmann. Critical Galton–Watson process: The maximum of total progenies within a large window. Teoriâ veroâtnostej i ee primeneniâ, Tome 52 (2007) no. 3, pp. 419-445. http://geodesic.mathdoc.fr/item/TVP_2007_52_3_a1/

[1] Athreya K. B., “On the maximum sequence in a critical branching process”, Ann. Probab., 16:2 (1988), 502–507 | DOI | MR | Zbl

[2] Bondarenko E. M., Topchii V. A., “Otsenki dlya matematicheskogo ozhidaniya maksimuma kriticheskogo protsessa Galtona–Vatsona na konechnom intervale”, Sib. matem. zhurn., 42:2 (2001), 249–257 | MR | Zbl

[3] Borovkov K. A., Vatutin V. A., “On the distribution tails and expectations of maxima in critical branching processes”, J. Appl. Probab., 33:3 (1996), 614–622 | DOI | MR | Zbl

[4] Durrett R., “Conditioned limit theorems for some null recurrent Markov processes”, Ann. Probab., 6:5 (1976), 798–828 | DOI | MR

[5] Feller V., Vvedenie v teoriyu veroyatnostei i ee prilozheniya, t. II, Mir, M., 1984, 751 pp.

[6] Grimvall A., “On the convergence of sequences of branching processes”, Ann. Probab., 2:1 (1974), 1027–1045 | DOI | MR | Zbl

[7] Kharris T., Teoriya vetvyaschikhsya sluchainykh protsessov, Mir, M., 1966, 355 pp.

[8] Karpenko A. V., Nagaev S. V., “Predelnye teoremy dlya polnogo chisla potomkov v vetvyaschemsya protsesse Galtona–Vatsona”, Teoriya veroyatn. i ee primen., 38:3 (1993), 503–528 | MR

[9] Kämmerle K., Schuh H.-J., “The maximum in critical Galton–Watson and birth and death processes”, J. Appl. Probab., 23:3 (1986), 601–613 | DOI | MR | Zbl

[10] Nagaev S. V., Vakhtel V. I., “Veroyatnostnye neravenstva dlya kriticheskogo protsessa Galtona–Vatsona”, Teoriya veroyatn. i ee primen., 50:2 (2005), 266–291 | MR

[11] Pakes A. G., “On the maximum and absorption time of a left-continuous random walk”, J. Appl. Probab., 15:2 (1978), 292–299 | DOI | MR | Zbl

[12] Pakes A. G., “Remarks on the maxima of a martingale sequence with application to the simple critical branching process”, J. Appl. Probab., 24:3 (1987), 768–772 | DOI | MR | Zbl

[13] Seneta E., Pravilno menyayuschiesya funktsii, Nauka, M., 1985, 141 pp. | MR | Zbl

[14] Slack R. S., “A branching process with mean one and possibly infinite variance”, Z. Wahrscheinlichkeitstheor. verw. Geb., 9 (1968), 139–145 | DOI | MR | Zbl

[15] Vatutin V. A., “Lokalnaya predelnaya teorema dlya kriticheskikh vetvyaschikhsya protsessov Bellmana–Kharrisa”, Tr. MIAN, 158, 1981, 9–30 | MR | Zbl

[16] von Bahr B., Esseen C.-G., “Inequalities for the $r$th absolute moment of a sum of random variables, $1\le r\le 2$”, Ann. Math. Statist., 36 (1965), 299–303 | DOI | MR | Zbl

[17] Vatutin V. A., Topchii V. A., “Maksimum kriticheskikh protsessov Galtona–Vatsona i nepreryvnye sleva sluchainye bluzhdaniya”, Teoriya veroyatn. i ee primen., 42:1 (1997), 21–34 | MR | Zbl

[18] Weiner H., “Moments of the maximum in a critical branching process”, J. Appl. Probab., 21:4 (1984), 920–923 | DOI | MR | Zbl