On one estimate of the ruin probability
Teoriâ veroâtnostej i ee primeneniâ, Tome 52 (2007) no. 2, pp. 359-363 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The paper deduces the inequality for the ruin probability from a Laplace formula for a player versus an infinitely rich opponent.
Keywords: ruin probability, classic ruin problem.
@article{TVP_2007_52_2_a7,
     author = {G. P. Ivanova and V. Ya. Kondratyev},
     title = {On one estimate of the ruin probability},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {359--363},
     year = {2007},
     volume = {52},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_2007_52_2_a7/}
}
TY  - JOUR
AU  - G. P. Ivanova
AU  - V. Ya. Kondratyev
TI  - On one estimate of the ruin probability
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 2007
SP  - 359
EP  - 363
VL  - 52
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TVP_2007_52_2_a7/
LA  - ru
ID  - TVP_2007_52_2_a7
ER  - 
%0 Journal Article
%A G. P. Ivanova
%A V. Ya. Kondratyev
%T On one estimate of the ruin probability
%J Teoriâ veroâtnostej i ee primeneniâ
%D 2007
%P 359-363
%V 52
%N 2
%U http://geodesic.mathdoc.fr/item/TVP_2007_52_2_a7/
%G ru
%F TVP_2007_52_2_a7
G. P. Ivanova; V. Ya. Kondratyev. On one estimate of the ruin probability. Teoriâ veroâtnostej i ee primeneniâ, Tome 52 (2007) no. 2, pp. 359-363. http://geodesic.mathdoc.fr/item/TVP_2007_52_2_a7/

[1] Uspensky J. V., Introduction to Mathematical Probability, McGraw-Hill, New York, 1937, 240 pp. | Zbl

[2] Feller V., Vvedenie v teoriyu veroyatnostei i ee prilozheniya, T. 1, Mir, M., 1984, 528 pp. | MR

[3] Prudnikov A. V., Brychkov Yu. A., Marichev O. I., Integraly i ryady. Elementarnye funktsii, Nauka, M., 1981, 798 pp. | MR | Zbl

[4] Abramovits M., Stigan I. (red.), Spravochnik po spetsialnym funktsiyam s formulami, grafikami i matematicheskimi tablitsami, Nauka, M., 1979, 830 pp. | MR