Poisson limit joint distributions for a random allocation scheme of two-type particles
Teoriâ veroâtnostej i ee primeneniâ, Tome 52 (2007) no. 2, pp. 351-358 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

For the independent polynomial allocation scheme of particles of two types we consider the numbers of cells containing given numbers of particles of each type. A theorem on the weak convergence of the vector formed by these numbers to the random vector with independent Poisson components is proved.
Keywords: random allocations
Mots-clés : joint distribution, Poisson limit theorem.
@article{TVP_2007_52_2_a6,
     author = {V. V. Gaas},
     title = {Poisson limit joint distributions for a random allocation scheme of two-type particles},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {351--358},
     year = {2007},
     volume = {52},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_2007_52_2_a6/}
}
TY  - JOUR
AU  - V. V. Gaas
TI  - Poisson limit joint distributions for a random allocation scheme of two-type particles
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 2007
SP  - 351
EP  - 358
VL  - 52
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TVP_2007_52_2_a6/
LA  - ru
ID  - TVP_2007_52_2_a6
ER  - 
%0 Journal Article
%A V. V. Gaas
%T Poisson limit joint distributions for a random allocation scheme of two-type particles
%J Teoriâ veroâtnostej i ee primeneniâ
%D 2007
%P 351-358
%V 52
%N 2
%U http://geodesic.mathdoc.fr/item/TVP_2007_52_2_a6/
%G ru
%F TVP_2007_52_2_a6
V. V. Gaas. Poisson limit joint distributions for a random allocation scheme of two-type particles. Teoriâ veroâtnostej i ee primeneniâ, Tome 52 (2007) no. 2, pp. 351-358. http://geodesic.mathdoc.fr/item/TVP_2007_52_2_a6/

[1] Gaas V. V., “Puassonovskaya predelnaya teorema dlya sovmestnykh raspredelenii v skheme sluchainogo razmescheniya chastits dvukh tipov”, Obozr. prikl. i promyshl. matem., 13:2 (2006), 284

[2] Mikhailov V. G., “Yavnye otsenki v predelnykh teoremakh dlya summ sluchainykh indikatorov”, Obozr. prikl. i promyshl. matem., 1:4 (1994), 580–617

[3] Mirakhmedov Sh. A., “Sluchainye razlozhimye statistiki v obobschennoi skheme”, Diskretn. matem., 1:4 (1989), 46–62 | MR | Zbl

[4] Popova T. Yu., “Predelnye teoremy v odnoi modeli razmescheniya chastits dvukh tipov”, Teoriya veroyatn. i ee primen., 13:3 (1968), 542–548 | MR | Zbl

[5] Sevastyanov B. A., “Predelnyi zakon Puassona v skheme summ zavisimykh sluchainykh velichin”, Teoriya veroyatn. i ee primen., 17:4 (1972), 733–738