On properties of quantum channels related to their classical capacity
Teoriâ veroâtnostej i ee primeneniâ, Tome 52 (2007) no. 2, pp. 301-335 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

This paper is devoted to further study of the Holevo capacity of infinite-dimensional quantum channels. The existence of a unique optimal average state for a quantum channel constrained by an arbitrary convex set of states is shown. The minimax expression for the Holevo capacity of a constrained channel is obtained. The $\chi$-function and the convex closure of the output entropy of an infinite-dimensional quantum channel are considered. It is shown that the $\chi$-function of an arbitrary channel is lower semicontinuous on the set of all states and has continuous restrictions to subsets of states with continuous output entropy. The explicit expression for the convex closure of the output entropy of an infinite-dimensional quantum channel is obtained and its properties are explored. It is shown that the convex closure of the output entropy coincides with the convex hull of the output entropy on the set of states with finite output entropy and, similarly to the $\chi$-function, it has continuous restrictions to subsets of states with continuous output entropy. The applications of the obtained results to the theory of entanglement are considered. The properties of the convex closure of the output entropy make it possible to generalize some results related to the additivity problem to the infinite-dimensional case.
Keywords: quantum state, entropy, quantum channel, the Holevo capacity, the $\chi$-function, convex closure of the output entropy of a quantum channel.
@article{TVP_2007_52_2_a3,
     author = {M. E. Shirokov},
     title = {On properties of quantum channels related to their classical capacity},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {301--335},
     year = {2007},
     volume = {52},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_2007_52_2_a3/}
}
TY  - JOUR
AU  - M. E. Shirokov
TI  - On properties of quantum channels related to their classical capacity
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 2007
SP  - 301
EP  - 335
VL  - 52
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TVP_2007_52_2_a3/
LA  - ru
ID  - TVP_2007_52_2_a3
ER  - 
%0 Journal Article
%A M. E. Shirokov
%T On properties of quantum channels related to their classical capacity
%J Teoriâ veroâtnostej i ee primeneniâ
%D 2007
%P 301-335
%V 52
%N 2
%U http://geodesic.mathdoc.fr/item/TVP_2007_52_2_a3/
%G ru
%F TVP_2007_52_2_a3
M. E. Shirokov. On properties of quantum channels related to their classical capacity. Teoriâ veroâtnostej i ee primeneniâ, Tome 52 (2007) no. 2, pp. 301-335. http://geodesic.mathdoc.fr/item/TVP_2007_52_2_a3/

[1] Billingsli P., Skhodimost veroyatnostnykh mer, Mir, M., 1977

[2] Bratteli U., Robinson D., Operatornye algebry i kvantovaya statisticheskaya mekhanika, Mir, M., 1982, 511 pp. | MR | Zbl

[3] Verner R. F., Kholevo A. S., Shirokov M. E., “O ponyatii stseplennosti v gilbertovykh prostranstvakh”, Uspekhi matem. nauk, 60:2(362) (2005), 153–154 | MR

[4] Ioffe A. D., Tikhomirov V. M., Teoriya ekstremalnykh zadach, Nauka, M., 1974, 479 pp. | MR | Zbl

[5] Kolmogorov A. N., Fomin S. V., Elementy teorii funktsii i funktsionalnogo analiza, Nauka, M., 1989, 623 pp. | MR

[6] Polovinkin E. S., Balashov M. V., Elementy vypuklogo i silno vypuklogo analiza, Fizmatlit, M., 2004, 415 pp.

[7] Kholevo A. S., Vvedenie v kvantovuyu teoriyu informatsii, MTsNMO, M., 2002, 126 pp.

[8] Kholevo A. S., Statisticheskaya struktura kvantovoi teorii, In-t kompyut. issled., M.–Izhevsk, 2003, 191 pp.

[9] Kholevo A. S., “Klassicheskaya propusknaya sposobnost kvantovykh kanalov s ogranicheniyami”, Teoriya veroyatn. i ee primen., 48:2 (2003), 359–374 | MR | Zbl

[10] Kholevo A. S., Shirokov M. E., “Nepreryvnye ansambli i klassicheskaya propusknaya sposobnost kvantovykh kanalov beskonechnoi razmernosti”, Teoriya veroyatn. i ee primen., 50:1 (2005), 98–114 | MR

[11] Shirokov M. E., “Entropiinye kharakteristiki podmnozhestv sostoyanii, I”, Izv. RAN, 70:6 (2006), 193–222 | MR | Zbl

[12] Alfsen E., Compact Convex Sets and Boundary Integrals, Springer-Verlag, New York–Heidelberg, 1971, 210 pp. | MR | Zbl

[13] Audenaert K. M. R., Braunstein S. L., “On strong subadditivity of the entanglement of formation”, Comm. Math. Phys., 246:3 (2004), 443–452 | DOI | MR | Zbl

[14] Bourgin R. D., “Partial orderings for integral representations on convex sets with the Radon–Nikodým property”, Pacific J. Math., 81:1 (1979), 29–44 | MR | Zbl

[15] Donald M. J., “Further results on the relative entropy”, Math. Proc. Cambridge Philos. Soc., 101:2 (1987), 363–373 | DOI | MR

[16] Dell'Antonio G. F., “On the limits of sequences of normal states”, Comm. Pure Appl. Math., 20 (1967), 413–429 | MR

[17] Bennett C. H., DiVincenzo D. P., Smolin J. A., Wootters W. K., “Mixed-state entanglement and quantum error correction”, Phys. Rev. A (3), 54:5 (1996), 3824–3851 | DOI | MR

[18] Davies E. B., “Information and quantum measurement”, IEEE Trans. Inform. Theory, 24:5 (1978), 596–599 | DOI | MR | Zbl

[19] Eisert J., Simon C., Plenio M. B., “On the quantification of entanglement in infinite-dimensional quantum systems”, J. Phys. A, 35:17 (2002), 3911–3923 | DOI | MR | Zbl

[20] Harremoës P., “Information topologies with applications”, Entropy, Search, Complexity, Bolyai Soc. Math. Stud., 16, eds. I. Csiszár, G. O. H. Katona, and G. Tardos, Springer-Verlag, Berlin, 2007, 113–150 | MR

[21] Holevo A. S., Shirokov M. E., “On Shor's channel extension and constrained channels”, Comm. Math. Phys., 249:2 (2004), 417–430 | DOI | MR | Zbl

[22] Lindblad G., “Expectation and entropy inequalities for finite quantum systems”, Comm. Math. Phys., 39:2 (1974), 111–119 | DOI | MR | Zbl

[23] Lindblad G., “Completely positive maps and entropy inequalities”, Comm. Math. Phys., 40:2 (1975), 147–151 | DOI | MR | Zbl

[24] Majewski A. W., “On entanglement of formation”, J. Phys. A, 35:1 (2002), 123–134 | DOI | MR | Zbl

[25] Nielsen M. A., Chuang I. L., Quantum Computation and Quantum Information, Cambridge Univ. Press, Cambridge, 2000, 676 pp. | MR

[26] Nielsen M. A., Continuity bounds for entanglement, , 1999 arXiv:quant-ph/9908086 | MR

[27] Ohya M., Petz D., Quantum Entropy and Its Use, Springer-Verlag, Berlin, 1993, 335 pp. | MR | Zbl

[28] Parthasarathy K. R., Probability Measures on Metric Spaces, Academic Press, New York–London, 1967, 276 pp. | MR | Zbl

[29] Schumacher B., Westmoreland M. D., Optimal signal ensembles, , 1999 arXiv:quant-ph/9912122

[30] Shirokov M. E., On the additivity conjecture for channels with arbitrary constraints, , 2003 arXiv:quant-ph/0308168

[31] Shirokov M. E., “The Holevo capacity of infinite dimensional channels and the additivity problem”, Comm. Math. Phys., 262:1 (2006), 137–159 | DOI | MR | Zbl

[32] Shirokov M. E., On channels with finite Holevo capacity, , 2006 arXiv:quant-ph/0602073 | MR

[33] Simon B., “Convergence theorem for entropy. Appendix to Lieb E. H., Ruskai M. B. Proof of the strong subadditivity of quantum-mechanical entropy”, J. Math. Phys., 14 (1973), 1938–1941 | DOI | MR

[34] Wehrl A., “General properties of entropy”, Rev. Modern Phys., 50:2 (1978), 221–260 | DOI | MR

[35] Uhlmann A., Entropy and optimal decompositions of states relative to a maximal commutative subalgebra, , 1997 arXiv:quant-ph/9704017