@article{TVP_2007_52_2_a3,
author = {M. E. Shirokov},
title = {On properties of quantum channels related to their classical capacity},
journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
pages = {301--335},
year = {2007},
volume = {52},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TVP_2007_52_2_a3/}
}
M. E. Shirokov. On properties of quantum channels related to their classical capacity. Teoriâ veroâtnostej i ee primeneniâ, Tome 52 (2007) no. 2, pp. 301-335. http://geodesic.mathdoc.fr/item/TVP_2007_52_2_a3/
[1] Billingsli P., Skhodimost veroyatnostnykh mer, Mir, M., 1977
[2] Bratteli U., Robinson D., Operatornye algebry i kvantovaya statisticheskaya mekhanika, Mir, M., 1982, 511 pp. | MR | Zbl
[3] Verner R. F., Kholevo A. S., Shirokov M. E., “O ponyatii stseplennosti v gilbertovykh prostranstvakh”, Uspekhi matem. nauk, 60:2(362) (2005), 153–154 | MR
[4] Ioffe A. D., Tikhomirov V. M., Teoriya ekstremalnykh zadach, Nauka, M., 1974, 479 pp. | MR | Zbl
[5] Kolmogorov A. N., Fomin S. V., Elementy teorii funktsii i funktsionalnogo analiza, Nauka, M., 1989, 623 pp. | MR
[6] Polovinkin E. S., Balashov M. V., Elementy vypuklogo i silno vypuklogo analiza, Fizmatlit, M., 2004, 415 pp.
[7] Kholevo A. S., Vvedenie v kvantovuyu teoriyu informatsii, MTsNMO, M., 2002, 126 pp.
[8] Kholevo A. S., Statisticheskaya struktura kvantovoi teorii, In-t kompyut. issled., M.–Izhevsk, 2003, 191 pp.
[9] Kholevo A. S., “Klassicheskaya propusknaya sposobnost kvantovykh kanalov s ogranicheniyami”, Teoriya veroyatn. i ee primen., 48:2 (2003), 359–374 | MR | Zbl
[10] Kholevo A. S., Shirokov M. E., “Nepreryvnye ansambli i klassicheskaya propusknaya sposobnost kvantovykh kanalov beskonechnoi razmernosti”, Teoriya veroyatn. i ee primen., 50:1 (2005), 98–114 | MR
[11] Shirokov M. E., “Entropiinye kharakteristiki podmnozhestv sostoyanii, I”, Izv. RAN, 70:6 (2006), 193–222 | MR | Zbl
[12] Alfsen E., Compact Convex Sets and Boundary Integrals, Springer-Verlag, New York–Heidelberg, 1971, 210 pp. | MR | Zbl
[13] Audenaert K. M. R., Braunstein S. L., “On strong subadditivity of the entanglement of formation”, Comm. Math. Phys., 246:3 (2004), 443–452 | DOI | MR | Zbl
[14] Bourgin R. D., “Partial orderings for integral representations on convex sets with the Radon–Nikodým property”, Pacific J. Math., 81:1 (1979), 29–44 | MR | Zbl
[15] Donald M. J., “Further results on the relative entropy”, Math. Proc. Cambridge Philos. Soc., 101:2 (1987), 363–373 | DOI | MR
[16] Dell'Antonio G. F., “On the limits of sequences of normal states”, Comm. Pure Appl. Math., 20 (1967), 413–429 | MR
[17] Bennett C. H., DiVincenzo D. P., Smolin J. A., Wootters W. K., “Mixed-state entanglement and quantum error correction”, Phys. Rev. A (3), 54:5 (1996), 3824–3851 | DOI | MR
[18] Davies E. B., “Information and quantum measurement”, IEEE Trans. Inform. Theory, 24:5 (1978), 596–599 | DOI | MR | Zbl
[19] Eisert J., Simon C., Plenio M. B., “On the quantification of entanglement in infinite-dimensional quantum systems”, J. Phys. A, 35:17 (2002), 3911–3923 | DOI | MR | Zbl
[20] Harremoës P., “Information topologies with applications”, Entropy, Search, Complexity, Bolyai Soc. Math. Stud., 16, eds. I. Csiszár, G. O. H. Katona, and G. Tardos, Springer-Verlag, Berlin, 2007, 113–150 | MR
[21] Holevo A. S., Shirokov M. E., “On Shor's channel extension and constrained channels”, Comm. Math. Phys., 249:2 (2004), 417–430 | DOI | MR | Zbl
[22] Lindblad G., “Expectation and entropy inequalities for finite quantum systems”, Comm. Math. Phys., 39:2 (1974), 111–119 | DOI | MR | Zbl
[23] Lindblad G., “Completely positive maps and entropy inequalities”, Comm. Math. Phys., 40:2 (1975), 147–151 | DOI | MR | Zbl
[24] Majewski A. W., “On entanglement of formation”, J. Phys. A, 35:1 (2002), 123–134 | DOI | MR | Zbl
[25] Nielsen M. A., Chuang I. L., Quantum Computation and Quantum Information, Cambridge Univ. Press, Cambridge, 2000, 676 pp. | MR
[26] Nielsen M. A., Continuity bounds for entanglement, , 1999 arXiv:quant-ph/9908086 | MR
[27] Ohya M., Petz D., Quantum Entropy and Its Use, Springer-Verlag, Berlin, 1993, 335 pp. | MR | Zbl
[28] Parthasarathy K. R., Probability Measures on Metric Spaces, Academic Press, New York–London, 1967, 276 pp. | MR | Zbl
[29] Schumacher B., Westmoreland M. D., Optimal signal ensembles, , 1999 arXiv:quant-ph/9912122
[30] Shirokov M. E., On the additivity conjecture for channels with arbitrary constraints, , 2003 arXiv:quant-ph/0308168
[31] Shirokov M. E., “The Holevo capacity of infinite dimensional channels and the additivity problem”, Comm. Math. Phys., 262:1 (2006), 137–159 | DOI | MR | Zbl
[32] Shirokov M. E., On channels with finite Holevo capacity, , 2006 arXiv:quant-ph/0602073 | MR
[33] Simon B., “Convergence theorem for entropy. Appendix to Lieb E. H., Ruskai M. B. Proof of the strong subadditivity of quantum-mechanical entropy”, J. Math. Phys., 14 (1973), 1938–1941 | DOI | MR
[34] Wehrl A., “General properties of entropy”, Rev. Modern Phys., 50:2 (1978), 221–260 | DOI | MR
[35] Uhlmann A., Entropy and optimal decompositions of states relative to a maximal commutative subalgebra, , 1997 arXiv:quant-ph/9704017