Limit theorems for reduced branching processes in a random environment
Teoriâ veroâtnostej i ee primeneniâ, Tome 52 (2007) no. 2, pp. 271-300 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Let $Z(n)$, $n=0,1\dots$ be a branching process evolving in the random environment generated by a sequence of iid generating functions $f_0(s),f_1(s)\dots$ and let $S_0=0$, $S_k=X_1+\dots+X_k$, $k\ge 1$, be the associated random walk with $X_i=\log f_{i-1}'(1)$, and let $\tau(n)$ be the leftmost point of minimum of $\{S_k\}_{k\ge 0}$ on the interval $[0,n]$. Denoting by $Z(k,n)$ the number of particles existing in the branching process at moment $k\le n$ and having nonempty offspring at time $n$ and assuming that the associated random walk satisfies the Spitzer–Doney condition $\mathbf{P}\{S_n>0\}\to\rho\in(0,1)$, $n\to\infty$, we show (under the quenched approach) that for each fixed $m=0,\pm 1,\pm 2,\dots$ the distribution of $Z(\tau(n)+m,n)$ given $Z(n)>0$ converges as $n\to\infty$ to a (random) discrete distribution which is proper with probability 1. On the other hand, if $m=m(n)\to\infty$ as $n\to\infty$, then to prove a conditional limit theorem for $Z(\tau(n)+m,n)$ given $Z(n)>0$, a scaling of $Z(\tau(n)+m,n)$ is needed by a function growing to infinity as $m\to\infty$.
Keywords: branching processes in a random environment, Spitzer–Doney condition, conditional limit theorems, reduced process, most recent common ancestor.
@article{TVP_2007_52_2_a2,
     author = {V. A. Vatutin and E. E. D'yakonova},
     title = {Limit theorems for reduced branching processes in a random environment},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {271--300},
     year = {2007},
     volume = {52},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_2007_52_2_a2/}
}
TY  - JOUR
AU  - V. A. Vatutin
AU  - E. E. D'yakonova
TI  - Limit theorems for reduced branching processes in a random environment
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 2007
SP  - 271
EP  - 300
VL  - 52
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TVP_2007_52_2_a2/
LA  - ru
ID  - TVP_2007_52_2_a2
ER  - 
%0 Journal Article
%A V. A. Vatutin
%A E. E. D'yakonova
%T Limit theorems for reduced branching processes in a random environment
%J Teoriâ veroâtnostej i ee primeneniâ
%D 2007
%P 271-300
%V 52
%N 2
%U http://geodesic.mathdoc.fr/item/TVP_2007_52_2_a2/
%G ru
%F TVP_2007_52_2_a2
V. A. Vatutin; E. E. D'yakonova. Limit theorems for reduced branching processes in a random environment. Teoriâ veroâtnostej i ee primeneniâ, Tome 52 (2007) no. 2, pp. 271-300. http://geodesic.mathdoc.fr/item/TVP_2007_52_2_a2/

[1] Athreya K. B., Karlin S., “On branching processes with random environments. I. Extinction probabilities”, Ann. Math. Statist., 42:5 (1971), 1499–1520 | DOI | MR | Zbl

[2] Athreya K. B., Karlin S., “On branching processes with random environments. II. Limit theorems”, Ann. Math. Statist., 42:6 (1971), 1843–1858 | DOI | MR | Zbl

[3] Athreya K. B., Ney P. E., Branching Processes., Springer-Verlag, New York–Heidelberg, 1972, 287 pp. | MR | Zbl

[4] Afanasyev V. I., Geiger J., Kersting G., Vatutin V. A., “Criticality for branching processes in random environment”, Ann. Probab., 33:2 (2005), 645–673 | DOI | MR | Zbl

[5] Borovkov K. A., Vatutin V. A., “Reduced critical branching processes in random environment”, Stochastic Process. Appl., 71:2 (1997), 225–240 | DOI | MR | Zbl

[6] Vatutin V. A., “Redutsirovannye vetvyaschiesya protsessy v sluchainoi srede: kriticheskii sluchai”, Teoriya veroyatn. i ee. primen., 47:1 (2002), 21–38 | MR | Zbl

[7] Vatutin V. A., Dyakonova E. E., “Reduced branching processes in random environment”, Mathematics and Computer Science. II: Algorithms, Trees, Combinatorics and Probabilities, eds. B. Chauvin et al., Birkhäuser, Basel, 2002, 455–467 | MR | Zbl

[8] Vatutin V. A., Dyakonova E. E., “Yaglom type limit theorem for branching processes in random environment”, Mathematics and Computer Science. III: Algorithms, Trees, Combinatorics and Probabilities, eds. M. Drmota et al., Birkhäuser, Basel, 2004, 375–385 | MR | Zbl

[9] Vatutin V. A., Dyakonova E. E., “Vetvyaschiesya protsessy Galtona–Vatsona v sluchainoi srede. I: Predelnye teoremy”, Teoriya veroyatn. i ee. primen., 48:2 (2003), 274–300 | MR | Zbl

[10] Vatutin V. A., Dyakonova E. E., “Vetvyaschiesya protsessy Galtona–Vatsona v sluchainoi srede. II: konechnomernye raspredeleniya”, Teoriya veroyatn. i ee. primen., 49:2 (2004), 231–268 | MR | Zbl

[11] Vatutin V. A., Dyakonova E. E., “Vetvyaschiesya protsessy v sluchainoi srede i butylochnye gorlyshki v evolyutsii populyatsii”, Teoriya veroyatn. i ee primen., 51:1 (2006), 22–46 | MR

[12] Geiger J., Kersting G., “The survival probability of a critical branching process in random environment”, Teoriya veroyatn. i ee primen., 45:3 (2000), 607–615 | MR | Zbl

[13] Doney R. A., “Spitzer's condition and the ladder variables in random walks”, Probab. Theory Related Fields, 101:4 (1995), 577–580 | DOI | MR | Zbl

[14] Durrett R., “Conditioned limit theorems for some null recurrent Markov processes”, Ann. Probab., 6:5 (1978), 798–828 | DOI | MR | Zbl

[15] Zubkov A. M., “Predelnye raspredeleniya rasstoyaniya do blizhaishego obschego predka”, Teoriya veroyatn. i ee primen., 20:3 (1975), 614–623 | MR | Zbl

[16] Spitser F., Printsipy sluchainogo bluzhdaniya, Mir, M., 1969, 472 pp.

[17] Fleischmann K., Vatutin V. A., “Reduced subcritical branching processes in a random environment”, Adv. Appl. Probab., 31:1 (1999), 88–111 | DOI | MR | Zbl

[18] Fleischmann K., Prehn U., “Ein Grenzwertsatz für subkritische Verzweigungsprozesse mit endlich vielen Typen von Teilchen”, Math. Nachr., 64 (1974), 357–362 | DOI | MR | Zbl

[19] Fleischmann K., Siegmund-Schultze R., “The structure of reduced critical Galton–Watson processes”, Math. Nachr., 79 (1977), 233–241 | DOI | MR