@article{TVP_2007_52_2_a2,
author = {V. A. Vatutin and E. E. D'yakonova},
title = {Limit theorems for reduced branching processes in a random environment},
journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
pages = {271--300},
year = {2007},
volume = {52},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TVP_2007_52_2_a2/}
}
TY - JOUR AU - V. A. Vatutin AU - E. E. D'yakonova TI - Limit theorems for reduced branching processes in a random environment JO - Teoriâ veroâtnostej i ee primeneniâ PY - 2007 SP - 271 EP - 300 VL - 52 IS - 2 UR - http://geodesic.mathdoc.fr/item/TVP_2007_52_2_a2/ LA - ru ID - TVP_2007_52_2_a2 ER -
V. A. Vatutin; E. E. D'yakonova. Limit theorems for reduced branching processes in a random environment. Teoriâ veroâtnostej i ee primeneniâ, Tome 52 (2007) no. 2, pp. 271-300. http://geodesic.mathdoc.fr/item/TVP_2007_52_2_a2/
[1] Athreya K. B., Karlin S., “On branching processes with random environments. I. Extinction probabilities”, Ann. Math. Statist., 42:5 (1971), 1499–1520 | DOI | MR | Zbl
[2] Athreya K. B., Karlin S., “On branching processes with random environments. II. Limit theorems”, Ann. Math. Statist., 42:6 (1971), 1843–1858 | DOI | MR | Zbl
[3] Athreya K. B., Ney P. E., Branching Processes., Springer-Verlag, New York–Heidelberg, 1972, 287 pp. | MR | Zbl
[4] Afanasyev V. I., Geiger J., Kersting G., Vatutin V. A., “Criticality for branching processes in random environment”, Ann. Probab., 33:2 (2005), 645–673 | DOI | MR | Zbl
[5] Borovkov K. A., Vatutin V. A., “Reduced critical branching processes in random environment”, Stochastic Process. Appl., 71:2 (1997), 225–240 | DOI | MR | Zbl
[6] Vatutin V. A., “Redutsirovannye vetvyaschiesya protsessy v sluchainoi srede: kriticheskii sluchai”, Teoriya veroyatn. i ee. primen., 47:1 (2002), 21–38 | MR | Zbl
[7] Vatutin V. A., Dyakonova E. E., “Reduced branching processes in random environment”, Mathematics and Computer Science. II: Algorithms, Trees, Combinatorics and Probabilities, eds. B. Chauvin et al., Birkhäuser, Basel, 2002, 455–467 | MR | Zbl
[8] Vatutin V. A., Dyakonova E. E., “Yaglom type limit theorem for branching processes in random environment”, Mathematics and Computer Science. III: Algorithms, Trees, Combinatorics and Probabilities, eds. M. Drmota et al., Birkhäuser, Basel, 2004, 375–385 | MR | Zbl
[9] Vatutin V. A., Dyakonova E. E., “Vetvyaschiesya protsessy Galtona–Vatsona v sluchainoi srede. I: Predelnye teoremy”, Teoriya veroyatn. i ee. primen., 48:2 (2003), 274–300 | MR | Zbl
[10] Vatutin V. A., Dyakonova E. E., “Vetvyaschiesya protsessy Galtona–Vatsona v sluchainoi srede. II: konechnomernye raspredeleniya”, Teoriya veroyatn. i ee. primen., 49:2 (2004), 231–268 | MR | Zbl
[11] Vatutin V. A., Dyakonova E. E., “Vetvyaschiesya protsessy v sluchainoi srede i butylochnye gorlyshki v evolyutsii populyatsii”, Teoriya veroyatn. i ee primen., 51:1 (2006), 22–46 | MR
[12] Geiger J., Kersting G., “The survival probability of a critical branching process in random environment”, Teoriya veroyatn. i ee primen., 45:3 (2000), 607–615 | MR | Zbl
[13] Doney R. A., “Spitzer's condition and the ladder variables in random walks”, Probab. Theory Related Fields, 101:4 (1995), 577–580 | DOI | MR | Zbl
[14] Durrett R., “Conditioned limit theorems for some null recurrent Markov processes”, Ann. Probab., 6:5 (1978), 798–828 | DOI | MR | Zbl
[15] Zubkov A. M., “Predelnye raspredeleniya rasstoyaniya do blizhaishego obschego predka”, Teoriya veroyatn. i ee primen., 20:3 (1975), 614–623 | MR | Zbl
[16] Spitser F., Printsipy sluchainogo bluzhdaniya, Mir, M., 1969, 472 pp.
[17] Fleischmann K., Vatutin V. A., “Reduced subcritical branching processes in a random environment”, Adv. Appl. Probab., 31:1 (1999), 88–111 | DOI | MR | Zbl
[18] Fleischmann K., Prehn U., “Ein Grenzwertsatz für subkritische Verzweigungsprozesse mit endlich vielen Typen von Teilchen”, Math. Nachr., 64 (1974), 357–362 | DOI | MR | Zbl
[19] Fleischmann K., Siegmund-Schultze R., “The structure of reduced critical Galton–Watson processes”, Math. Nachr., 79 (1977), 233–241 | DOI | MR