On the rate of approximation in limit theorems for sums of moving averages
Teoriâ veroâtnostej i ee primeneniâ, Tome 52 (2007) no. 2, pp. 405-414 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We consider a linear process $X_t=\sum_{j=0}^\infty a_j\varepsilon_{t-j}$, $t\ge 1$, where $\varepsilon_i$, $i\in Z$, are independent identically distributed random variables in the domain of attraction of a stable law with index $\alpha$, $0<\alpha\le 2$, $\alpha\ne 1$. Under some conditions on random variables $\varepsilon_i$ and coefficients $a_j$, we look for bounds in approximation of distribution of sums $S_n=B_n^{-1}\sum_{t=1}^nX_t$ by an appropriate stable law. The obtained bounds have optimal order with respect to $n$.
Keywords: linear processes, stable laws, accuracy of approximation.
@article{TVP_2007_52_2_a14,
     author = {V. I. Paulauskas and D. Surgailis},
     title = {On the rate of approximation in limit theorems for sums of moving averages},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {405--414},
     year = {2007},
     volume = {52},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TVP_2007_52_2_a14/}
}
TY  - JOUR
AU  - V. I. Paulauskas
AU  - D. Surgailis
TI  - On the rate of approximation in limit theorems for sums of moving averages
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 2007
SP  - 405
EP  - 414
VL  - 52
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TVP_2007_52_2_a14/
LA  - en
ID  - TVP_2007_52_2_a14
ER  - 
%0 Journal Article
%A V. I. Paulauskas
%A D. Surgailis
%T On the rate of approximation in limit theorems for sums of moving averages
%J Teoriâ veroâtnostej i ee primeneniâ
%D 2007
%P 405-414
%V 52
%N 2
%U http://geodesic.mathdoc.fr/item/TVP_2007_52_2_a14/
%G en
%F TVP_2007_52_2_a14
V. I. Paulauskas; D. Surgailis. On the rate of approximation in limit theorems for sums of moving averages. Teoriâ veroâtnostej i ee primeneniâ, Tome 52 (2007) no. 2, pp. 405-414. http://geodesic.mathdoc.fr/item/TVP_2007_52_2_a14/

[1] Arkashov N. S., Borisov I. S., “Gaussovskaya approksimatsiya protsessov chastnykh summ skolzyaschikh srednikh”, Sib. matem. zhurn., 45:6 (2004), 1221–1255 | MR | Zbl

[2] Astrauskas A., “Predelnye teoremy dlya summ lineino porozhdennykh sluchainykh velichin”, Litov. matem. sb., 23:2 (1983), 3–12 | MR | Zbl

[3] Avram F., Taqqu M. S., “Weak convergence of sums of moving averages in the $\alpha$-stable domain of attraction”, Ann. Probab., 20:1 (1992), 483–503 | DOI | MR | Zbl

[4] Christoph G., Wolf W., Convergence Theorems with a Stable Limit Law, Math. Res., 70, Akademie-Verlag, Berlin, 1992, 200 pp. | MR | Zbl

[5] Davydov Yu. A., “Printsip invariantnosti dlya statsionarnykh protsessov”, Teoriya veroyatn. i ee primen., 15:3 (1970), 498–509 | MR | Zbl

[6] Giraitis L., Surgailis D., “ARCH-type bilinear models with double long memory”, Stochastic Process. Appl., 100 (2002), 275–300 | DOI | MR | Zbl

[7] Gorodetskii V. V., “O skhodimosti k poluustoichivym gaussovskim protsessam”, Teoriya veroyatn. i ee primen., 22:3 (1977), 513–522 ; 24:2 (1979), 444 | MR | MR

[8] Ibragimov I. A., “Nekotorye predelnye teoremy dlya statsionarnykh v uzkom smysle veroyatnostnykh protsessov”, Dokl. AN SSSR, 125:4 (1959), 711–714 | Zbl

[9] Ibragimov I. A., Linnik Yu. V., Nezavisimye i statsionarno svyazannye velichiny, Nauka, M., 1965, 524 pp.

[10] Lamperti J. W., “Semi-stable stochastic processes”, Trans. Amer. Math. Soc., 104 (1962), 62–78 | DOI | MR | Zbl

[11] Maejima M., “On a class of self-similar processes”, Z. Wahrscheinlichkeitstheor. Verw. Geb., 62:2 (1983), 235–245 | DOI | MR | Zbl

[12] Nagaev S. V., Rotar V. I., “Ob usilenii otsenok tipa Lyapunova (sluchai blizosti raspredelenii slagaemykh k normalnomu”, Teoriya veroyatn. i ee primen., 18:1 (1973), 109–121 ; 21:1 (1976), 226 | MR | Zbl | MR

[13] Paulauskas V. I., “Otsenki ostatochnogo chlena v predelnoi teoreme v sluchae ustoichivogo predelnogo zakona”, Litov. matem. sb., 14:1 (1974), 165–187 | MR | Zbl

[14] Paulauskas V. I., “Ravnomernye i neravnomernye otsenki ostatochnogo chlena v predelnoi teoreme s ustoichivym predelnym zakonom”, Litov. matem. sb., 14:4 (1974), 171–185 | MR | Zbl

[15] Petrov V. V., Limit Theorems of Probability Theory. Sequences of Independent Random Variables, Oxford. Stud. Probab., 4, Clarendon Press, New York, 1995, 292 pp. | MR | Zbl

[16] Surgailis D., “O skhodimosti summ nelineinykh funktsii ot skolzyaschikh srednikh k avtomodelnym protsessam”, Dokl. AN SSSR, 257:1 (1981), 51–54 | MR | Zbl

[17] Taqqu M. S., “Fractional Brownian motion and long-range dependence”, Theory and Applications of Long-Range Dependence, eds. P. Doukhan, G. Oppenheim, and M. S. Taqqu, Birkhäuser, Boston, 2003, 5–38 | MR | Zbl