@article{TVP_2007_52_2_a14,
author = {V. I. Paulauskas and D. Surgailis},
title = {On the rate of approximation in limit theorems for sums of moving averages},
journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
pages = {405--414},
year = {2007},
volume = {52},
number = {2},
language = {en},
url = {http://geodesic.mathdoc.fr/item/TVP_2007_52_2_a14/}
}
TY - JOUR AU - V. I. Paulauskas AU - D. Surgailis TI - On the rate of approximation in limit theorems for sums of moving averages JO - Teoriâ veroâtnostej i ee primeneniâ PY - 2007 SP - 405 EP - 414 VL - 52 IS - 2 UR - http://geodesic.mathdoc.fr/item/TVP_2007_52_2_a14/ LA - en ID - TVP_2007_52_2_a14 ER -
V. I. Paulauskas; D. Surgailis. On the rate of approximation in limit theorems for sums of moving averages. Teoriâ veroâtnostej i ee primeneniâ, Tome 52 (2007) no. 2, pp. 405-414. http://geodesic.mathdoc.fr/item/TVP_2007_52_2_a14/
[1] Arkashov N. S., Borisov I. S., “Gaussovskaya approksimatsiya protsessov chastnykh summ skolzyaschikh srednikh”, Sib. matem. zhurn., 45:6 (2004), 1221–1255 | MR | Zbl
[2] Astrauskas A., “Predelnye teoremy dlya summ lineino porozhdennykh sluchainykh velichin”, Litov. matem. sb., 23:2 (1983), 3–12 | MR | Zbl
[3] Avram F., Taqqu M. S., “Weak convergence of sums of moving averages in the $\alpha$-stable domain of attraction”, Ann. Probab., 20:1 (1992), 483–503 | DOI | MR | Zbl
[4] Christoph G., Wolf W., Convergence Theorems with a Stable Limit Law, Math. Res., 70, Akademie-Verlag, Berlin, 1992, 200 pp. | MR | Zbl
[5] Davydov Yu. A., “Printsip invariantnosti dlya statsionarnykh protsessov”, Teoriya veroyatn. i ee primen., 15:3 (1970), 498–509 | MR | Zbl
[6] Giraitis L., Surgailis D., “ARCH-type bilinear models with double long memory”, Stochastic Process. Appl., 100 (2002), 275–300 | DOI | MR | Zbl
[7] Gorodetskii V. V., “O skhodimosti k poluustoichivym gaussovskim protsessam”, Teoriya veroyatn. i ee primen., 22:3 (1977), 513–522 ; 24:2 (1979), 444 | MR | MR
[8] Ibragimov I. A., “Nekotorye predelnye teoremy dlya statsionarnykh v uzkom smysle veroyatnostnykh protsessov”, Dokl. AN SSSR, 125:4 (1959), 711–714 | Zbl
[9] Ibragimov I. A., Linnik Yu. V., Nezavisimye i statsionarno svyazannye velichiny, Nauka, M., 1965, 524 pp.
[10] Lamperti J. W., “Semi-stable stochastic processes”, Trans. Amer. Math. Soc., 104 (1962), 62–78 | DOI | MR | Zbl
[11] Maejima M., “On a class of self-similar processes”, Z. Wahrscheinlichkeitstheor. Verw. Geb., 62:2 (1983), 235–245 | DOI | MR | Zbl
[12] Nagaev S. V., Rotar V. I., “Ob usilenii otsenok tipa Lyapunova (sluchai blizosti raspredelenii slagaemykh k normalnomu”, Teoriya veroyatn. i ee primen., 18:1 (1973), 109–121 ; 21:1 (1976), 226 | MR | Zbl | MR
[13] Paulauskas V. I., “Otsenki ostatochnogo chlena v predelnoi teoreme v sluchae ustoichivogo predelnogo zakona”, Litov. matem. sb., 14:1 (1974), 165–187 | MR | Zbl
[14] Paulauskas V. I., “Ravnomernye i neravnomernye otsenki ostatochnogo chlena v predelnoi teoreme s ustoichivym predelnym zakonom”, Litov. matem. sb., 14:4 (1974), 171–185 | MR | Zbl
[15] Petrov V. V., Limit Theorems of Probability Theory. Sequences of Independent Random Variables, Oxford. Stud. Probab., 4, Clarendon Press, New York, 1995, 292 pp. | MR | Zbl
[16] Surgailis D., “O skhodimosti summ nelineinykh funktsii ot skolzyaschikh srednikh k avtomodelnym protsessam”, Dokl. AN SSSR, 257:1 (1981), 51–54 | MR | Zbl
[17] Taqqu M. S., “Fractional Brownian motion and long-range dependence”, Theory and Applications of Long-Range Dependence, eds. P. Doukhan, G. Oppenheim, and M. S. Taqqu, Birkhäuser, Boston, 2003, 5–38 | MR | Zbl