On complete convergence for arrays of row-wise negatively associated random variables
Teoriâ veroâtnostej i ee primeneniâ, Tome 52 (2007) no. 2, pp. 393-397 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We obtain a complete convergence result for arrays of row-wise negatively associated random variables which extends the results of Hu, Szynal, and Volodin [Statist. Probab. Lett., 38 (1998), pp. 27–31], Hu et al. [Commun. Korean Math. Soc., 18 (2003), pp. 375–383], and Sung, Volodin, and Hu [Statist. Probab. Lett., 71 (2005), pp. 303–311] by the methods developed by Kruglov, Volodin, and Hu [Statist. Probab. Lett., 76 (2006), pp. 1631–1640].
Keywords: negatively associated random variable, array of row-wise negatively associated random variables, complete convergence.
@article{TVP_2007_52_2_a12,
     author = {P. Chen and T.-Ch. Hu and X. J. Liu and A. I. Volodin},
     title = {On complete convergence for arrays of row-wise negatively associated random variables},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {393--397},
     year = {2007},
     volume = {52},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TVP_2007_52_2_a12/}
}
TY  - JOUR
AU  - P. Chen
AU  - T.-Ch. Hu
AU  - X. J. Liu
AU  - A. I. Volodin
TI  - On complete convergence for arrays of row-wise negatively associated random variables
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 2007
SP  - 393
EP  - 397
VL  - 52
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TVP_2007_52_2_a12/
LA  - en
ID  - TVP_2007_52_2_a12
ER  - 
%0 Journal Article
%A P. Chen
%A T.-Ch. Hu
%A X. J. Liu
%A A. I. Volodin
%T On complete convergence for arrays of row-wise negatively associated random variables
%J Teoriâ veroâtnostej i ee primeneniâ
%D 2007
%P 393-397
%V 52
%N 2
%U http://geodesic.mathdoc.fr/item/TVP_2007_52_2_a12/
%G en
%F TVP_2007_52_2_a12
P. Chen; T.-Ch. Hu; X. J. Liu; A. I. Volodin. On complete convergence for arrays of row-wise negatively associated random variables. Teoriâ veroâtnostej i ee primeneniâ, Tome 52 (2007) no. 2, pp. 393-397. http://geodesic.mathdoc.fr/item/TVP_2007_52_2_a12/

[1] Hu T.-C., Ordóñez Cabrera M., Sung S. H., Volodin A., “Complete convergence for arrays of rowwise independent random variables”, Commun. Korean Math. Soc., 18:2 (2003), 375–383 | MR | Zbl

[2] Hu T.-C., Szynal D., Volodin A. I., “A note on complete convergence for arrays”, Statist. Probab. Lett., 38:1 (1998), 27–31 | DOI | MR | Zbl

[3] Joag-Dev K., Proschan F., “Negative association of random variables, with applications”, Ann. Statist., 11:1 (1983), 286–295 | DOI | MR

[4] Kruglov V. M., Volodin A. I., Hu T.-C., “On complete convergence for arrays”, Statist. Probab. Lett., 76:15 (2006), 1631–1640 | DOI | MR | Zbl

[5] Liang H. Y., “Complete convergence for weighted sums of negatively associated random variables”, Statist. Probab. Lett., 48:4 (2000), 317–325 | DOI | MR | Zbl

[6] Liang H. Y., Su C., “Complete convergence for weighted sums of NA sequences”, Statist. Probab. Lett., 45:1 (1999), 85–95 | DOI | MR | Zbl

[7] Shao Q. M., “A comparison theorem on moment inequalities between negatively associated and independent random variables”, J. Theoret. Probab., 13:2 (2000), 343–356 | DOI | MR | Zbl

[8] Sung S. H., Volodin A. I., Hu T.-C., “More on complete convergence for arrays”, Statist. Probab. Lett., 71:4 (2005), 303–311 | DOI | MR | Zbl