Mots-clés : Poisson equation
@article{TVP_2007_52_2_a11,
author = {R. Cavazos-Cadena and D. Hern\'andez-Hern\'andez},
title = {Contractive approximations for the {Varadhan's} function on a finite {Markov} chain},
journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
pages = {385--393},
year = {2007},
volume = {52},
number = {2},
language = {en},
url = {http://geodesic.mathdoc.fr/item/TVP_2007_52_2_a11/}
}
TY - JOUR AU - R. Cavazos-Cadena AU - D. Hernández-Hernández TI - Contractive approximations for the Varadhan's function on a finite Markov chain JO - Teoriâ veroâtnostej i ee primeneniâ PY - 2007 SP - 385 EP - 393 VL - 52 IS - 2 UR - http://geodesic.mathdoc.fr/item/TVP_2007_52_2_a11/ LA - en ID - TVP_2007_52_2_a11 ER -
R. Cavazos-Cadena; D. Hernández-Hernández. Contractive approximations for the Varadhan's function on a finite Markov chain. Teoriâ veroâtnostej i ee primeneniâ, Tome 52 (2007) no. 2, pp. 385-393. http://geodesic.mathdoc.fr/item/TVP_2007_52_2_a11/
[1] Cavazos-Cadena R., Fernández-Gaucherand E., “Controlled Markov chains with risk-sensitive criteria: average cost, optimality equations, and optimal solutions”, Math. Methods Oper. Res., 49:2 (1999), 299–324 | MR | Zbl
[2] Cavazos-Cadena R., Hernández-Hernández D., “Solution to the risk-sensitive average optimality equation in communicating Markov decision chains with finite state space: and alternative approach”, Math. Methods Oper. Res., 56:3 (2002), 473–479 | DOI | MR | Zbl
[3] Cavazos-Cadena R., Hernández-Hernández D., “A characterization of exponential functionals in finite Markov chains”, Math. Methods Oper. Res., 60:3 (2004), 399–414 | DOI | MR | Zbl
[4] Dembo A., Zeitouni O., Large Deviations Techniques and Applications, Springer-Verlag, New York, 1998, 396 pp. | MR | Zbl
[5] Di Masi G. B., Stettner Ł., “Risk-sensitive control of discrete-time Markov processes with infinite horizon”, SIAM J. Control Optim., 38:1 (1999), 61–78 | DOI | MR | Zbl
[6] Fleming W. H., Hernández-Hernández D., “Risk-sensitive control of finite state machines on an infinite horizon, I”, SIAM J. Control Optim., 35:5 (1997), 1790–1810 | DOI | MR | Zbl
[7] Fleming W. H., McEneaney W. M., “Risk-sensitive control on an infinite time horizon”, SIAM J. Control Optim., 33:6 (1995), 1881–1915 | DOI | MR | Zbl
[8] Hernández-Hernández D., Marcus S. I., “Risk sensitive control of Markov processes in countable state space”, Systems Control Lett., 29:3 (1996), 147–155 ; corridendum 34:1–2 (1998), 105–106 | DOI | MR | Zbl | MR
[9] Howard A. R., Matheson J. E., “Risk-sensitive Markov decision processes”, Managment Sci., 18 (1971/72), 356–369 | DOI | MR
[10] Puterman M. L., Markov Decision Processes: Discrete Stochastic Dynamic Programming, Wiley, New York, 1994, 649 pp. | MR | Zbl
[11] Ross S. M., Introduction to Stochastic Dynamic Programming, Academic Press, New York, 1983, 164 pp. | MR | Zbl
[12] Seneta E., Nonnegative Matrices and Markov Chains, Springer-Verlag, New York, 1981, 279 pp. | MR | Zbl