Contractive approximations for the Varadhan's function on a finite Markov chain
Teoriâ veroâtnostej i ee primeneniâ, Tome 52 (2007) no. 2, pp. 385-393 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

This work concerns Markov chains with finite state space. Given a real-valued cost function on the state space, the corresponding Varadhan's function, measuring the exponential growth rate of the aggregated costs, is characterized as the unique limit of the fixed points of a family of contraction operators, a conclusion that does not involve any condition on the transition law.
Keywords: risk-sensitive average cost, decreasing function along trajectories, closed set.
Mots-clés : Poisson equation
@article{TVP_2007_52_2_a11,
     author = {R. Cavazos-Cadena and D. Hern\'andez-Hern\'andez},
     title = {Contractive approximations for the {Varadhan's} function on a finite {Markov} chain},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {385--393},
     year = {2007},
     volume = {52},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TVP_2007_52_2_a11/}
}
TY  - JOUR
AU  - R. Cavazos-Cadena
AU  - D. Hernández-Hernández
TI  - Contractive approximations for the Varadhan's function on a finite Markov chain
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 2007
SP  - 385
EP  - 393
VL  - 52
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TVP_2007_52_2_a11/
LA  - en
ID  - TVP_2007_52_2_a11
ER  - 
%0 Journal Article
%A R. Cavazos-Cadena
%A D. Hernández-Hernández
%T Contractive approximations for the Varadhan's function on a finite Markov chain
%J Teoriâ veroâtnostej i ee primeneniâ
%D 2007
%P 385-393
%V 52
%N 2
%U http://geodesic.mathdoc.fr/item/TVP_2007_52_2_a11/
%G en
%F TVP_2007_52_2_a11
R. Cavazos-Cadena; D. Hernández-Hernández. Contractive approximations for the Varadhan's function on a finite Markov chain. Teoriâ veroâtnostej i ee primeneniâ, Tome 52 (2007) no. 2, pp. 385-393. http://geodesic.mathdoc.fr/item/TVP_2007_52_2_a11/

[1] Cavazos-Cadena R., Fernández-Gaucherand E., “Controlled Markov chains with risk-sensitive criteria: average cost, optimality equations, and optimal solutions”, Math. Methods Oper. Res., 49:2 (1999), 299–324 | MR | Zbl

[2] Cavazos-Cadena R., Hernández-Hernández D., “Solution to the risk-sensitive average optimality equation in communicating Markov decision chains with finite state space: and alternative approach”, Math. Methods Oper. Res., 56:3 (2002), 473–479 | DOI | MR | Zbl

[3] Cavazos-Cadena R., Hernández-Hernández D., “A characterization of exponential functionals in finite Markov chains”, Math. Methods Oper. Res., 60:3 (2004), 399–414 | DOI | MR | Zbl

[4] Dembo A., Zeitouni O., Large Deviations Techniques and Applications, Springer-Verlag, New York, 1998, 396 pp. | MR | Zbl

[5] Di Masi G. B., Stettner Ł., “Risk-sensitive control of discrete-time Markov processes with infinite horizon”, SIAM J. Control Optim., 38:1 (1999), 61–78 | DOI | MR | Zbl

[6] Fleming W. H., Hernández-Hernández D., “Risk-sensitive control of finite state machines on an infinite horizon, I”, SIAM J. Control Optim., 35:5 (1997), 1790–1810 | DOI | MR | Zbl

[7] Fleming W. H., McEneaney W. M., “Risk-sensitive control on an infinite time horizon”, SIAM J. Control Optim., 33:6 (1995), 1881–1915 | DOI | MR | Zbl

[8] Hernández-Hernández D., Marcus S. I., “Risk sensitive control of Markov processes in countable state space”, Systems Control Lett., 29:3 (1996), 147–155 ; corridendum 34:1–2 (1998), 105–106 | DOI | MR | Zbl | MR

[9] Howard A. R., Matheson J. E., “Risk-sensitive Markov decision processes”, Managment Sci., 18 (1971/72), 356–369 | DOI | MR

[10] Puterman M. L., Markov Decision Processes: Discrete Stochastic Dynamic Programming, Wiley, New York, 1994, 649 pp. | MR | Zbl

[11] Ross S. M., Introduction to Stochastic Dynamic Programming, Academic Press, New York, 1983, 164 pp. | MR | Zbl

[12] Seneta E., Nonnegative Matrices and Markov Chains, Springer-Verlag, New York, 1981, 279 pp. | MR | Zbl