Backward stochastic differential equations driven by càdlàg martingales
Teoriâ veroâtnostej i ee primeneniâ, Tome 52 (2007) no. 2, pp. 375-385 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Backward stochastic differential equations (BSDEs) arise in many financial problems. Although there exists a growing number of papers considering general financial markets, the theory of BSDEs has been developed just in the Brownian setting. We consider BSDEs driven by an $\mathbf{R}^d$-valued càdlàg martingale and we study the properties of the solutions in the case of a, possibly nonuniform, Lipschitz generator.
Keywords: backward semimartingales equations, regularity and stability of solutions, Lipschitz generators, stochastic calculus.
@article{TVP_2007_52_2_a10,
     author = {R. Carbone and B. Ferrario and M. Santacroce},
     title = {Backward stochastic differential equations driven by c\`adl\`ag martingales},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {375--385},
     year = {2007},
     volume = {52},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TVP_2007_52_2_a10/}
}
TY  - JOUR
AU  - R. Carbone
AU  - B. Ferrario
AU  - M. Santacroce
TI  - Backward stochastic differential equations driven by càdlàg martingales
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 2007
SP  - 375
EP  - 385
VL  - 52
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TVP_2007_52_2_a10/
LA  - en
ID  - TVP_2007_52_2_a10
ER  - 
%0 Journal Article
%A R. Carbone
%A B. Ferrario
%A M. Santacroce
%T Backward stochastic differential equations driven by càdlàg martingales
%J Teoriâ veroâtnostej i ee primeneniâ
%D 2007
%P 375-385
%V 52
%N 2
%U http://geodesic.mathdoc.fr/item/TVP_2007_52_2_a10/
%G en
%F TVP_2007_52_2_a10
R. Carbone; B. Ferrario; M. Santacroce. Backward stochastic differential equations driven by càdlàg martingales. Teoriâ veroâtnostej i ee primeneniâ, Tome 52 (2007) no. 2, pp. 375-385. http://geodesic.mathdoc.fr/item/TVP_2007_52_2_a10/

[1] Bismut J.-M., “Conjugate convex functions in optimal stochastic control”, J. Math. Anal. Appl., 44 (1973), 384–404 | DOI | MR

[2] Bobrovnytska O., Schweizer M., “Mean-variance hedging and stochastic control: beyond the Brownian setting”, IEEE Trans. Automat. Control, 49:3 (2004), 396–408 | DOI | MR

[3] Chitashvili R. J., “Martingale ideology in the theory of controlled stochastic processes”, Lecture Notes in Math., 1021, 1983, 73–92 | MR | Zbl

[4] Chitashvili R. J., Mania M. G., “Optimal locally absolutely continuous change of measure. Finite set of decisions. I, II”, Stochastics, 21:2 (1987), 131–185 ; 21:3, 187–229 | MR | Zbl | MR | Zbl

[5] Dellacherie C., Meyer P.-A., Probabilities and potential B. Theory of martingales, North-Holland, Amsterdam, 1982, 463 pp. | MR | Zbl

[6] El Karoui N., Huang S-J., “A general result of existence and uniqueness of backward stochastic differential equations”, Backward Stochastic Differential Equations, Pitman Res. Notes Math. Ser., 364, Longman, Harlow, 1997, 27–36 | MR | Zbl

[7] El Karoui N., Peng S., Quenez M. C., “Backward stochastic differential equations in finance”, Math. Finance, 7:1 (1997), 1–71 | DOI | MR | Zbl

[8] El Karoui N., Quenez M.-C., “Dynamic programming and pricing of contingent claims in an incomplete market”, SIAM J. Control Optim., 33:1 (1995), 29–66 | DOI | MR | Zbl

[9] Elliott R., Stokhasticheskii analiz i ego prilozheniya, Mir, M., 1986, 351 pp. | MR | Zbl

[10] Kobylanski M., “Backward stochastic differential equations and partial differential equations with quadratic growth”, Ann. Probab., 28:2 (2000), 558–602 | DOI | MR | Zbl

[11] Lépingle D., Mémin J., “Sur l'intégrabilité uniforme des martingales exponentielles”, Z. Wahrscheinlichkeitstheor. Verw. Geb., 42:3 (1978), 175–203 | DOI | MR | Zbl

[12] Mania M., Santacroce M., Tevzadze R., “A semimartingale BSDE related to the minimal entropy martingale measure”, Finance Stoch., 7:3 (2003), 385–402 | DOI | MR | Zbl

[13] Mania M., Schweizer M., “Dynamic exponential utility indifference valuation”, Ann. Appl. Probab., 15:3 (2005), 2113–2143 | DOI | MR | Zbl

[14] Mania M., Tevzadze R., “A semimartingale Bellman equation and the variance-optimal martingale measure”, Georgian Math. J., 7:4 (2000), 765–792 | MR | Zbl

[15] Mania M., Tevzadze R., “Backward stochastic PDE and imperfect hedging”, Int. J. Theor. Appl. Finance, 6:7 (2003), 663–692 | DOI | MR | Zbl

[16] Pardoux É., Peng S. G., “Adapted solution of a backward stochastic differential equation”, Systems Control Lett., 14:1 (1990), 55–61 | DOI | MR | Zbl

[17] Rouge R., El Karoui N., “Pricing via utility maximization and entropy”, Math. Finance, 10:2 (2000), 259–276 | DOI | MR | Zbl