Estimates of densities of stationary distributions and transition probabilities of diffusion processes
Teoriâ veroâtnostej i ee primeneniâ, Tome 52 (2007) no. 2, pp. 240-270 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We obtain lower bounds for solutions to second order elliptic and parabolic equations on the whole space. Our method is based on the study of the dependence of a constant in Harnack's inequality on the coefficients of the equation. As an application we obtain lower bounds for densities of stationary distributions and transition probabilities of diffusion processes with unbounded drift coefficients.
Keywords: Harnack inequality, transition probabilities, stationary distribution, lower bounds for solutions to parabolic equations.
@article{TVP_2007_52_2_a1,
     author = {V. I. Bogachev and M. R\"ockner and S. V. Shaposhnikov},
     title = {Estimates of densities of stationary distributions and transition probabilities of diffusion processes},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {240--270},
     year = {2007},
     volume = {52},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_2007_52_2_a1/}
}
TY  - JOUR
AU  - V. I. Bogachev
AU  - M. Röckner
AU  - S. V. Shaposhnikov
TI  - Estimates of densities of stationary distributions and transition probabilities of diffusion processes
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 2007
SP  - 240
EP  - 270
VL  - 52
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TVP_2007_52_2_a1/
LA  - ru
ID  - TVP_2007_52_2_a1
ER  - 
%0 Journal Article
%A V. I. Bogachev
%A M. Röckner
%A S. V. Shaposhnikov
%T Estimates of densities of stationary distributions and transition probabilities of diffusion processes
%J Teoriâ veroâtnostej i ee primeneniâ
%D 2007
%P 240-270
%V 52
%N 2
%U http://geodesic.mathdoc.fr/item/TVP_2007_52_2_a1/
%G ru
%F TVP_2007_52_2_a1
V. I. Bogachev; M. Röckner; S. V. Shaposhnikov. Estimates of densities of stationary distributions and transition probabilities of diffusion processes. Teoriâ veroâtnostej i ee primeneniâ, Tome 52 (2007) no. 2, pp. 240-270. http://geodesic.mathdoc.fr/item/TVP_2007_52_2_a1/

[1] Bogachev V. I., Röckner M., “Regularity of invariant measures on finite- and infinite-dimensional spaces and applications”, J. Funct. Anal., 133:1 (1995), 168–223 | DOI | MR | Zbl

[2] Bogachev V. I., Krylov N. V., Röckner M., “Regularity of invariant measures: the case of nonconstant diffusion part”, J. Funct. Anal., 138:1 (1996), 223–242 | DOI | MR | Zbl

[3] Bogachev V. I., Rëkner M., “Obobschenie teoremy Khasminskogo ob invariantnykh merakh”, Teoriya veroyatn. i ee primen., 45:3 (2000), 417–436 | MR | Zbl

[4] Bogachev V. I., Krylov N. V., Rëkner M., “Differentsiruemost invariantnykh mer i perekhodnykh veroyatnostei singulyarnykh diffuzii”, Dokl. RAN, 376:2 (2001), 151–154 | MR | Zbl

[5] Bogachev V. I., Röckner M., Wang F.-Y., “Elliptic equations for invariant measures on finite and infinite dimensional manifolds”, J. Math. Pures Appl., 80:2 (2001), 177–221 | DOI | MR | Zbl

[6] Bogachev V. I., Krylov N. V., Röckner M., “On regularity of transition probabilities and invariant measures of singular diffusions under minimal conditions”, Comm. Partial Differential Equations, 26:11–12 (2001), 2037–2080 | DOI | MR | Zbl

[7] Bogachev V. I., Rëkner M., Shtannat V., “Edinstvennost reshenii ellipticheskikh uravnenii i edinstvennost invariantnykh mer diffuzii”, Matem. sb., 193:7 (2002), 3–36 | MR | Zbl

[8] Bogachev V. I., Da Prato G., Röckner M., “Existence of solutions to weak parabolic equations for measures”, Proc. London Math. Soc., 88:3 (2004), 753–774 | DOI | MR | Zbl

[9] Bogachev V. I., Krylov N.V., Rëkner M., “Regulyarnost i globalnye otsenki plotnostei invariantnykh mer diffuzionnykh protsessov”, Dokl. RAN, 405:5 (2005), 583–587 | MR | Zbl

[10] Bogachev V. I., Rëkner M., Shaposhnikov C. B., “Globalnaya regulyarnost i otsenki reshenii parabolicheskikh uravnenii”, Teoriya veroyatn. i ee primen., 50:4 (2005), 652–674 | MR

[11] Bogachev V. I., Krylov N. V., Röckner M., “Elliptic equations for measures: regularity and global bounds of densities”, J. Math. Pures Appl., 85:6 (2006), 743–757 | MR | Zbl

[12] Metafune G., Pallara D., Rhandi A., “Global regularity of invariant measures”, J. Funct. Anal., 223:2 (2005), 396–424 | DOI | MR | Zbl

[13] Morrey C. B., Multiple Integrals in the Calculus of Variations, Springer-Verlag, New York, 1966, 506 pp. | MR | Zbl

[14] Shaposhnikov C. B., “Otsenka Morri sobolevskikh norm reshenii ellipticheskikh uravnenii”, Matem. zametki, 79:3 (2006), 450–469 | MR | Zbl

[15] Lunardi A., Vespri V., “Hölder regularity in variational parabolic nonhomogeneous equations”, J. Differential Equations, 94:1 (1991), 1–40 | DOI | MR | Zbl

[16] Byun S.-S., “Elliptic equations with BMO coefficients in Lipschitz domains”, Trans. Amer. Math. Soc., 357:3 (2005), 1025–1046 | DOI | MR | Zbl

[17] Krylov N. V., “Parabolic and elliptic equations with VMO coefficients”, Comm. Partial Differential Equations, 32:3 (2007), 453–475 | DOI | MR | Zbl

[18] Ladyzhenskaya O. A., Solonnikov V. A., Uraltseva N. N., Lineinye i kvazilineinye uravneniya parabolicheskogo tipa, Nauka, M., 1967, 736 pp. | MR

[19] Gilbarg D., Trudinger N., Ellipticheskie differentsialnye uravneniya s chastnymi proizvodnymi vtorogo poryadka, Nauka, M., 1989, 463 pp. | MR | Zbl

[20] Aronson D. G., Serrin J., “Local behavior of solutions of quasilinear parabolic equations”, Arch. Rational Mech. Anal., 25 (1967), 81–122 | DOI | MR | Zbl

[21] Moser J., “A Harnack inequality for parabolic differential equations”, Comm. Pure Appl. Math., 17 (1964), 101–134 ; corrections: ibid 20 (1967), 231–236 | DOI | MR | Zbl | DOI | MR | Zbl

[22] Bogachev V. I., Da Prato G., Röckner M., On parabolic equations for measures, Preprint BiBoS no 06-05-213, Bielefeld University, Bielefeld, 2006; Comm. Partial Differential Equations (to appear)

[23] Bogachev V. I., Da Prato D., Röckner M., Stannat W., Uniqueness of solutions to weak parabolic equations for measures, Preprint BiBoS no 06-07-225, Bielefeld University, Bielefeld, 2006; Proc. London Math. Soc. (to appear)