Large deviation principle for partial sum processes of moving averages
Teoriâ veroâtnostej i ee primeneniâ, Tome 52 (2007) no. 2, pp. 209-239 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The logarithmic asymptotic is studied for large deviation probabilities of partial sum processes based on stationary observations having a structure of the so-called moving averages of a sequence of independent identically distributed random variables. The problem is studied in the case of attraction of these processes to a fractional Brownian motion with an arbitrary Hurst parameter.
Keywords: partial sum process of moving averages, fractional Brownian motion, large deviation principle
Mots-clés : Cameron–Martin space.
@article{TVP_2007_52_2_a0,
     author = {N. S. Arkashov and I. S. Borisov and A. A. Mogul'skii},
     title = {Large deviation principle for partial sum processes of moving averages},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {209--239},
     year = {2007},
     volume = {52},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_2007_52_2_a0/}
}
TY  - JOUR
AU  - N. S. Arkashov
AU  - I. S. Borisov
AU  - A. A. Mogul'skii
TI  - Large deviation principle for partial sum processes of moving averages
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 2007
SP  - 209
EP  - 239
VL  - 52
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TVP_2007_52_2_a0/
LA  - ru
ID  - TVP_2007_52_2_a0
ER  - 
%0 Journal Article
%A N. S. Arkashov
%A I. S. Borisov
%A A. A. Mogul'skii
%T Large deviation principle for partial sum processes of moving averages
%J Teoriâ veroâtnostej i ee primeneniâ
%D 2007
%P 209-239
%V 52
%N 2
%U http://geodesic.mathdoc.fr/item/TVP_2007_52_2_a0/
%G ru
%F TVP_2007_52_2_a0
N. S. Arkashov; I. S. Borisov; A. A. Mogul'skii. Large deviation principle for partial sum processes of moving averages. Teoriâ veroâtnostej i ee primeneniâ, Tome 52 (2007) no. 2, pp. 209-239. http://geodesic.mathdoc.fr/item/TVP_2007_52_2_a0/

[1] Pukhalskii A. A., “K teorii bolshikh uklonenii”, Teoriya veroyatn. i ee primen., 38:3 (1993), 553–562 | MR

[2] Puhalskii A., “On functional principle of large deviations”, New Trends in Probability and Statistics, v. 1, VSP, Utrecht, 1991, 198–218 | MR

[3] Borovkov A. A., Mogulskii A. A., Sakhanenko A. I., “Predelnye teoremy dlya sluchainykh protsessov”, Itogi nauki i tekhniki. Ser. Sovrem. problemy matem. Fundam. napr., 82, VINITI, M., 1995, 5–194 | MR

[4] Bogachev V. I., Gaussovskie mery, Nauka, M., 1997, 352 pp. | MR

[5] Ben Arous G., Ledoux M., “Schilder's large deviation principle without topology”, Asymptotic Problems in Probability Theory: Wiener Functionals and Asymptotics, Pitman Res. Notes Math. Ser., 284, Longman, Harlow, 1993, 107–121 | Zbl

[6] Lifshits M. A., Gaussovskie sluchainye funktsii, TBiMS,, Kiev, 1995, 246 pp.

[7] Kolmogorov A. N., Fomin S. V., Elementy teorii funktsii i funktsionalnogo analiza, Nauka, M., 1989, 623 pp. | MR

[8] Decreusefond L., Üstünel A. S., “Stochastic analysis of the fractional Brownian motion”, Potential Anal., 10:2 (1999), 177–214 | DOI | MR | Zbl

[9] Borovkov A. A., “Granichnye zadachi dlya sluchainykh bluzhdanii i bolshie ukloneniya v funktsionalnykh prostranstvakh”, Teoriya veroyatn. i ee primen., 12:4 (1967), 635–654 | MR | Zbl

[10] Mandelbrot B. B., Van Ness J. W., “Fractional Brownian motions, fractional noises and applications”, SIAM Rev., 10 (1968), 422–437 | DOI | MR | Zbl

[11] Davydov Yu. A., “Printsip invariantnosti dlya statsionarnykh protsessov”, Teoriya veroyatn. i ee primen., 15:3 (1970), 498–509 | MR | Zbl

[12] Arkashov N. S., Borisov I. S., “Gaussovskaya approksimatsiya protsessov chastnykh summ skolzyaschikh srednikh”, Sib. matem. zhurn., 45:6 (2004), 1221–1255 | MR | Zbl

[13] Varadhan S. R. S., “Asymptotic probabilities and differential equations”, Comm. Pure Appl. Math., 19:3 (1966), 261–286 | DOI | MR | Zbl

[14] Mogulskii A. A., “Bolshie ukloneniya dlya traektorii mnogomernykh sluchainykh bluzhdanii”, Teoriya veroyatn. i ee primen., 21:2 (1976), 309–323 | MR

[15] Mogulskii A. A., “Bolshie ukloneniya v prostranstve traektorii dlya posledovatelnostei i protsessov so statsionarnymi prirascheniyami”, Sib. matem. zhurn., 16:2 (1975), 314–327 | MR

[16] Petrov V. V., Predelnye teoremy dlya summ nezavisimykh sluchainykh velichin, Nauka, M., 1987, 317 pp. | MR

[17] Konstantopoulos T., Sakhanenko A., “Convergence and convergence rate to fractional Brownian motion for weighted random sums”, Sib. elektronnye matem. izvestiya, 1 (2004), 47–63 | MR | Zbl

[18] Lidbetter M., Lindgren G., Rotsen Kh., Ekstremumy sluchainykh posledovatelnostei i protsessov, Mir, M., 1989, 391 pp. | MR

[19] Dembo A., Zeitouni O., Large Deviations Techniques and Applications, Jones and Bartlett, Boston, 1993, 346 pp. | MR | Zbl