Sharp optimality in density deconvolution with dominating bias.~I
Teoriâ veroâtnostej i ee primeneniâ, Tome 52 (2007) no. 1, pp. 111-128

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider estimation of the common probability density $f$ of independent identically distributed random variables $X_i$ that are observed with an additive independent identically distributed noise. We assume that the unknown density $f$ belongs to a class $\mathcal A$ of densities whose characteristic function is described by the exponent $\exp(-\alpha |u|^r)$ as $|u|\to\infty$, where $\alpha>0$, $r>0$. The noise density assumed known and such that its characteristic function decays as $\exp(-\beta|u|^s)$, as $|u|\to\infty$, where $\beta>0$, $s>0$. Assuming that $r$, we suggest a kernel-type estimator whose variance turns out to be asymptotically negligible with respect to its squared bias both under the pointwise and $\mathbf L_2$ risks. For $r$ we construct a sharp adaptive estimator of $f$.
Keywords: nonparametric density estimation, infinitely differentiable functions, exact constants in nonparametric smoothing, minimax risk, adaptive curve estimation.
Mots-clés : deconvolution
@article{TVP_2007_52_1_a6,
     author = {C. Butucea and A. Tsybakov},
     title = {Sharp optimality in density deconvolution with dominating {bias.~I}},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {111--128},
     publisher = {mathdoc},
     volume = {52},
     number = {1},
     year = {2007},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TVP_2007_52_1_a6/}
}
TY  - JOUR
AU  - C. Butucea
AU  - A. Tsybakov
TI  - Sharp optimality in density deconvolution with dominating bias.~I
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 2007
SP  - 111
EP  - 128
VL  - 52
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TVP_2007_52_1_a6/
LA  - en
ID  - TVP_2007_52_1_a6
ER  - 
%0 Journal Article
%A C. Butucea
%A A. Tsybakov
%T Sharp optimality in density deconvolution with dominating bias.~I
%J Teoriâ veroâtnostej i ee primeneniâ
%D 2007
%P 111-128
%V 52
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TVP_2007_52_1_a6/
%G en
%F TVP_2007_52_1_a6
C. Butucea; A. Tsybakov. Sharp optimality in density deconvolution with dominating bias.~I. Teoriâ veroâtnostej i ee primeneniâ, Tome 52 (2007) no. 1, pp. 111-128. http://geodesic.mathdoc.fr/item/TVP_2007_52_1_a6/