Mots-clés : deconvolution
@article{TVP_2007_52_1_a6,
author = {C. Butucea and A. Tsybakov},
title = {Sharp optimality in density deconvolution with dominating {bias.~I}},
journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
pages = {111--128},
year = {2007},
volume = {52},
number = {1},
language = {en},
url = {http://geodesic.mathdoc.fr/item/TVP_2007_52_1_a6/}
}
C. Butucea; A. Tsybakov. Sharp optimality in density deconvolution with dominating bias. I. Teoriâ veroâtnostej i ee primeneniâ, Tome 52 (2007) no. 1, pp. 111-128. http://geodesic.mathdoc.fr/item/TVP_2007_52_1_a6/
[1] Artiles L. M., Adaptive minimax estimation in classes of smooth functions, PhD Thesis, University of Utrecht, Utrecht, 2001
[2] Belitser E., Levit B., “Asymptotically local minimax estimation of infinitely smooth density with censored data”, Ann. Inst. Statist. Math., 53:2 (2001), 289–306 | DOI | MR | Zbl
[3] Carroll R. J., Hall P., “Optimal rates of convergence for deconvolving a density”, J. Amer. Statist. Assoc., 83:404 (1988), 1184–1186 | DOI | MR | Zbl
[4] Cavalier L., Golubev G. K., Lepski O. V., Tsybakov A. B., “Block thresholding and sharp adaptive estimation in severely ill-posed inverse problems”, Teoriya veroyatn. i ee primen., 48:3 (2003), 534–556 | MR | Zbl
[5] Comte F., Taupin M.-L., Penalized contrast estimator for density deconvolution with mixing variable, Prépublication d'Orsay no 2003-30, Université Paris V, Paris, 2003
[6] Efromovich S., “Density estimation in the case of supersmooth measurement error”, J. Amer. Statist. Assoc., 92:438 (1997), 526–535 | DOI | MR | Zbl
[7] Efromovich S., Koltchinskii V., “On inverse problems with unknown operators”, IEEE Trans. Inform. Theory, 47:7 (2001), 2876–2894 | DOI | MR | Zbl
[8] Ermakov M. S., “Minimakskaya otsenka resheniya odnoi nekorrektno postavlennoi zadachi tipa svertki”, Problemy peredachi informatsii, 25:3 (1989), 28–39 | MR
[9] Fan J., “On the optimal rates of convergence for nonparametric deconvolution problems”, Ann. Statist., 19:3 (1991), 1257–1272 | DOI | MR | Zbl
[10] Fan J., “Global behavior of deconvolution kernel estimates”, Statist. Sinica, 1:2 (1991), 541–551 | MR | Zbl
[11] Goldenshluger A., “On pointwise adaptive nonparametric deconvolution”, Bernoulli, 5:5 (1999), 907–925 | DOI | MR | Zbl
[12] Golubev G. K. and Khasminskii R. Z., “Statistical approach to the Cauchy problem for the Laplace equation”, State of the Art in Probability and Statistics, Festschrift for W. R. van Zwet (Leiden, 1999), IMS Lecture Notes Monogr. Ser., 36, eds. M. de Gunst, C. Klaassen, and A. van der Vaart, Inst. Math. Statist., Beachwood, 2001, 419–433 | MR
[13] Ibragimov I. A., Khasminskii R. Z., “Esche ob otsenke plotnosti raspredeleniya”, Zapiski nauchn. sem. LOMI, 108, 1981, 72–88 | MR | Zbl
[14] Masry E., “Multivariate probability density deconvolution for stationary random processes”, IEEE Trans. Inform. Theory, 37:4 (1991), 1105–1115 | DOI | MR | Zbl
[15] Pensky M., Vidakovic B., “Adaptive wavelet estimator for nonparametric density deconvolution”, Ann. Statist., 27:6 (1999), 2033–2053 | DOI | MR | Zbl
[16] Ritov Y., On a deconvolution of normal distributions, Preprint, University of Berkeley, Berkeley, 1987
[17] Ruymgaart F. H., “A unified approach to inversion problems in statistics”, Math. Methods Statist., 2:2 (1993), 130–146 | MR | Zbl
[18] Stefanski L. A., Carroll R. J., “Deconvoluting kernel density estimators”, Statistics, 21:2 (1990), 169–184 | DOI | MR | Zbl
[19] Tsybakov A. B., “On the best rate of adaptive estimation in some inverse problems”, C. R. Acad. Sci. Paris, 330:9 (2000), 835–840 | MR | Zbl
[20] van Es A. J., Uh H.-W., “Asymptotic normality of nonparametric kernel type deconvolution density estimators: crossing the Cauchy boundary”, J. Nonparametr. Statist., 16:1–2 (2004), 261–277 | MR | Zbl
[21] Zhang C. H., “Fourier methods for estimating mixing densities and distributions”, Ann. Statist., 18:2 (1990), 806–831 | DOI | MR | Zbl
[22] Zolotarev V. M., One-dimensional Stable Distributions, Transl. Math. Monogr., 65, Amer. Math. Soc., Providence, RI, 1986, 284 pp. | MR | Zbl