Sharp optimality in density deconvolution with dominating bias. I
Teoriâ veroâtnostej i ee primeneniâ, Tome 52 (2007) no. 1, pp. 111-128 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We consider estimation of the common probability density $f$ of independent identically distributed random variables $X_i$ that are observed with an additive independent identically distributed noise. We assume that the unknown density $f$ belongs to a class $\mathcal A$ of densities whose characteristic function is described by the exponent $\exp(-\alpha |u|^r)$ as $|u|\to\infty$, where $\alpha>0$, $r>0$. The noise density assumed known and such that its characteristic function decays as $\exp(-\beta|u|^s)$, as $|u|\to\infty$, where $\beta>0$, $s>0$. Assuming that $r, we suggest a kernel-type estimator whose variance turns out to be asymptotically negligible with respect to its squared bias both under the pointwise and $\mathbf L_2$ risks. For $r we construct a sharp adaptive estimator of $f$.
Keywords: nonparametric density estimation, infinitely differentiable functions, exact constants in nonparametric smoothing, minimax risk, adaptive curve estimation.
Mots-clés : deconvolution
@article{TVP_2007_52_1_a6,
     author = {C. Butucea and A. Tsybakov},
     title = {Sharp optimality in density deconvolution with dominating {bias.~I}},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {111--128},
     year = {2007},
     volume = {52},
     number = {1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TVP_2007_52_1_a6/}
}
TY  - JOUR
AU  - C. Butucea
AU  - A. Tsybakov
TI  - Sharp optimality in density deconvolution with dominating bias. I
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 2007
SP  - 111
EP  - 128
VL  - 52
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TVP_2007_52_1_a6/
LA  - en
ID  - TVP_2007_52_1_a6
ER  - 
%0 Journal Article
%A C. Butucea
%A A. Tsybakov
%T Sharp optimality in density deconvolution with dominating bias. I
%J Teoriâ veroâtnostej i ee primeneniâ
%D 2007
%P 111-128
%V 52
%N 1
%U http://geodesic.mathdoc.fr/item/TVP_2007_52_1_a6/
%G en
%F TVP_2007_52_1_a6
C. Butucea; A. Tsybakov. Sharp optimality in density deconvolution with dominating bias. I. Teoriâ veroâtnostej i ee primeneniâ, Tome 52 (2007) no. 1, pp. 111-128. http://geodesic.mathdoc.fr/item/TVP_2007_52_1_a6/

[1] Artiles L. M., Adaptive minimax estimation in classes of smooth functions, PhD Thesis, University of Utrecht, Utrecht, 2001

[2] Belitser E., Levit B., “Asymptotically local minimax estimation of infinitely smooth density with censored data”, Ann. Inst. Statist. Math., 53:2 (2001), 289–306 | DOI | MR | Zbl

[3] Carroll R. J., Hall P., “Optimal rates of convergence for deconvolving a density”, J. Amer. Statist. Assoc., 83:404 (1988), 1184–1186 | DOI | MR | Zbl

[4] Cavalier L., Golubev G. K., Lepski O. V., Tsybakov A. B., “Block thresholding and sharp adaptive estimation in severely ill-posed inverse problems”, Teoriya veroyatn. i ee primen., 48:3 (2003), 534–556 | MR | Zbl

[5] Comte F., Taupin M.-L., Penalized contrast estimator for density deconvolution with mixing variable, Prépublication d'Orsay no 2003-30, Université Paris V, Paris, 2003

[6] Efromovich S., “Density estimation in the case of supersmooth measurement error”, J. Amer. Statist. Assoc., 92:438 (1997), 526–535 | DOI | MR | Zbl

[7] Efromovich S., Koltchinskii V., “On inverse problems with unknown operators”, IEEE Trans. Inform. Theory, 47:7 (2001), 2876–2894 | DOI | MR | Zbl

[8] Ermakov M. S., “Minimakskaya otsenka resheniya odnoi nekorrektno postavlennoi zadachi tipa svertki”, Problemy peredachi informatsii, 25:3 (1989), 28–39 | MR

[9] Fan J., “On the optimal rates of convergence for nonparametric deconvolution problems”, Ann. Statist., 19:3 (1991), 1257–1272 | DOI | MR | Zbl

[10] Fan J., “Global behavior of deconvolution kernel estimates”, Statist. Sinica, 1:2 (1991), 541–551 | MR | Zbl

[11] Goldenshluger A., “On pointwise adaptive nonparametric deconvolution”, Bernoulli, 5:5 (1999), 907–925 | DOI | MR | Zbl

[12] Golubev G. K. and Khasminskii R. Z., “Statistical approach to the Cauchy problem for the Laplace equation”, State of the Art in Probability and Statistics, Festschrift for W. R. van Zwet (Leiden, 1999), IMS Lecture Notes Monogr. Ser., 36, eds. M. de Gunst, C. Klaassen, and A. van der Vaart, Inst. Math. Statist., Beachwood, 2001, 419–433 | MR

[13] Ibragimov I. A., Khasminskii R. Z., “Esche ob otsenke plotnosti raspredeleniya”, Zapiski nauchn. sem. LOMI, 108, 1981, 72–88 | MR | Zbl

[14] Masry E., “Multivariate probability density deconvolution for stationary random processes”, IEEE Trans. Inform. Theory, 37:4 (1991), 1105–1115 | DOI | MR | Zbl

[15] Pensky M., Vidakovic B., “Adaptive wavelet estimator for nonparametric density deconvolution”, Ann. Statist., 27:6 (1999), 2033–2053 | DOI | MR | Zbl

[16] Ritov Y., On a deconvolution of normal distributions, Preprint, University of Berkeley, Berkeley, 1987

[17] Ruymgaart F. H., “A unified approach to inversion problems in statistics”, Math. Methods Statist., 2:2 (1993), 130–146 | MR | Zbl

[18] Stefanski L. A., Carroll R. J., “Deconvoluting kernel density estimators”, Statistics, 21:2 (1990), 169–184 | DOI | MR | Zbl

[19] Tsybakov A. B., “On the best rate of adaptive estimation in some inverse problems”, C. R. Acad. Sci. Paris, 330:9 (2000), 835–840 | MR | Zbl

[20] van Es A. J., Uh H.-W., “Asymptotic normality of nonparametric kernel type deconvolution density estimators: crossing the Cauchy boundary”, J. Nonparametr. Statist., 16:1–2 (2004), 261–277 | MR | Zbl

[21] Zhang C. H., “Fourier methods for estimating mixing densities and distributions”, Ann. Statist., 18:2 (1990), 806–831 | DOI | MR | Zbl

[22] Zolotarev V. M., One-dimensional Stable Distributions, Transl. Math. Monogr., 65, Amer. Math. Soc., Providence, RI, 1986, 284 pp. | MR | Zbl