Sharp optimality in density deconvolution with dominating bias.~I
Teoriâ veroâtnostej i ee primeneniâ, Tome 52 (2007) no. 1, pp. 111-128
Voir la notice de l'article provenant de la source Math-Net.Ru
We consider estimation of the common probability density $f$ of independent identically distributed random variables $X_i$ that are observed with an additive independent identically distributed noise. We assume that the unknown density $f$ belongs to a class $\mathcal A$ of densities whose characteristic function is described by the exponent $\exp(-\alpha |u|^r)$ as $|u|\to\infty$, where $\alpha>0$, $r>0$. The noise density assumed known and such that its characteristic function decays as $\exp(-\beta|u|^s)$, as $|u|\to\infty$, where $\beta>0$, $s>0$. Assuming that $r$, we suggest a kernel-type estimator whose variance turns out to be asymptotically negligible with respect to its squared bias both under the pointwise and $\mathbf L_2$ risks. For $r$ we construct a sharp adaptive estimator of $f$.
Keywords:
nonparametric density estimation, infinitely differentiable functions, exact constants in nonparametric smoothing, minimax risk, adaptive curve estimation.
Mots-clés : deconvolution
Mots-clés : deconvolution
@article{TVP_2007_52_1_a6,
author = {C. Butucea and A. Tsybakov},
title = {Sharp optimality in density deconvolution with dominating {bias.~I}},
journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
pages = {111--128},
publisher = {mathdoc},
volume = {52},
number = {1},
year = {2007},
language = {en},
url = {http://geodesic.mathdoc.fr/item/TVP_2007_52_1_a6/}
}
TY - JOUR AU - C. Butucea AU - A. Tsybakov TI - Sharp optimality in density deconvolution with dominating bias.~I JO - Teoriâ veroâtnostej i ee primeneniâ PY - 2007 SP - 111 EP - 128 VL - 52 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TVP_2007_52_1_a6/ LA - en ID - TVP_2007_52_1_a6 ER -
C. Butucea; A. Tsybakov. Sharp optimality in density deconvolution with dominating bias.~I. Teoriâ veroâtnostej i ee primeneniâ, Tome 52 (2007) no. 1, pp. 111-128. http://geodesic.mathdoc.fr/item/TVP_2007_52_1_a6/