Matrix subordinators and related Upsilon transformations
Teoriâ veroâtnostej i ee primeneniâ, Tome 52 (2007) no. 1, pp. 84-110 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A class of upsilon transformations of Lévy measures for matrix subordinators is introduced. Some regularizing properties of these transformations are derived, such as absolute continuity and complete monotonicity. The class of Lévy measures with completely monotone matrix densities is characterized. Examples of infinitely divisible nonnegative definite random matrices are constructed using an upsilon transformation.
Keywords: infinite divisibility, cone valued random variables, completely monotone matrix functions.
Mots-clés : random matrices, Lévy measures
@article{TVP_2007_52_1_a5,
     author = {O. E. Barndorff-Nielsen and V. P\'erez-Abreu},
     title = {Matrix subordinators and related {Upsilon} transformations},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {84--110},
     year = {2007},
     volume = {52},
     number = {1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TVP_2007_52_1_a5/}
}
TY  - JOUR
AU  - O. E. Barndorff-Nielsen
AU  - V. Pérez-Abreu
TI  - Matrix subordinators and related Upsilon transformations
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 2007
SP  - 84
EP  - 110
VL  - 52
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TVP_2007_52_1_a5/
LA  - en
ID  - TVP_2007_52_1_a5
ER  - 
%0 Journal Article
%A O. E. Barndorff-Nielsen
%A V. Pérez-Abreu
%T Matrix subordinators and related Upsilon transformations
%J Teoriâ veroâtnostej i ee primeneniâ
%D 2007
%P 84-110
%V 52
%N 1
%U http://geodesic.mathdoc.fr/item/TVP_2007_52_1_a5/
%G en
%F TVP_2007_52_1_a5
O. E. Barndorff-Nielsen; V. Pérez-Abreu. Matrix subordinators and related Upsilon transformations. Teoriâ veroâtnostej i ee primeneniâ, Tome 52 (2007) no. 1, pp. 84-110. http://geodesic.mathdoc.fr/item/TVP_2007_52_1_a5/

[1] Barndorff-Nielsen O. E., Lindner A., “Lévy copulas: dynamics and transforms of Upsilon-type”, Scand. J. Statist. (to appear) | MR

[2] Barndorff-Nielsen O. E., Maejima M., Sato K.-I., “Some classes of multivariate infinitely divisible distributions admitting stochastic integral representation”, Bernoulli, 12:1 (2006), 1–33 | MR | Zbl

[3] Barndorff-Nielsen O. E., Pedersen J., Sato K.-I., Adv. Appl. Probab., 33:1 (Multivariate subordination, self-decomposability and stability), 160–187 | MR | Zbl

[4] Barndorff-Nielsen O. E., Pérez-Abreu V., “Extensions of type $G$ and marginal infinite divisibility”, Teoriya veroyatn. i ee primen., 47:2 (2002), 301–319 | MR | Zbl

[5] Barndorff-Nielsen O. E., Pérez-Abreu V., “On recent results on Type $G$ multivariate laws”, Proceedings of the Second MaPhySto Conference on Lévy Processes: Theory and Applications, eds. O. E. Barndorff-Nielsen, MaPhySto, Aarhus, 2002, 206–210

[6] Barndorff-Nielsen O. E., Pérez-Abreu V., Rocha-Arteaga A., “Mat $G$ random matrices”, Stoch. Models, 22:4 (2006), 723–734 | DOI | MR | Zbl

[7] Barndorff-Nielsen O. E., Thorbjørnsen S., “A connection between free and classical infinite divisibility”, Infin. Dimens. Anal. Quantum Probab. Relat. Top., 7:4 (2004), 573–590 | DOI | MR | Zbl

[8] Barndorff-Nielsen O. E., Thorbjørnsen S., “Regularizing mappings of Lévy measures”, Stochastic Process. Appl., 116:3 (2006), 423–446 | DOI | MR | Zbl

[9] Barndorff-Nielsen O. E., Thorbjørnsen S., Bicontinuity of the Upsilon transformations, Research Report no 25, MaPhySto, Aarhus University, Aarhus, 2004

[10] Bochner S., Harmonic Analysis and the Theory of Probability, Univ. of California Press, Berkeley–Los Angeles, 1955, 176 pp. | MR

[11] Bondesson L., Generalized Gamma Convolutions and Related Classes of Distributions and Densities, Lecture Notes in Statist., 76, Springer-Verlag, New York, 1992, 173 pp. | MR | Zbl

[12] Eaton M. L., Multivariate Statistics – A Vector Space Approach, Wiley, New York, 1983, 512 pp. | MR | Zbl

[13] Griffiths R. C., “Characterization of infinitely divisible multivariate gamma distributions”, J. Multivariate Anal., 15:1 (1984), 13–20 | DOI | MR | Zbl

[14] Gupta A. K., Nagar D. K., Matrix Variate Distributions, Chapman Hall/CRC, Boca Raton, 2000, 367 pp. | MR

[15] Herz C. C., “Bessel functions of matrix argument”, Ann. Math., 61 (1955), 474–523 | DOI | MR | Zbl

[16] Kleinman D. L., Athans M., “The design of suboptimal linear time-varying systems”, IEEE Trans. Automat. Control, 13 (1968), 150–159 | DOI | MR

[17] Lasserre J. B., “A trace inequality for matrix product”, IEEE Trans. Automat. Control, 40:8 (1995), 1500–1501 | DOI | MR | Zbl

[18] Lévy P., “The arithmetical character of the Wishart distribution”, Proc. Cambridge Philos. Soc., 44 (1948), 295–297 | DOI | MR

[19] Maejima M., Rosinski J., “Type $G$ distributions on $R^d$”, J. Theoret. Probab., 15:2 (2002), 323–341 | DOI | MR | Zbl

[20] Mathai A. M., Jacobians of Matrix Transformations and Functions of Matrix Arguments, World Scientific, River Edge, 1997, 435 pp. | MR | Zbl

[21] Pedersen J., Sato K.-I., “Cone-parameter convolution semigroups and their subordination”, Tokyo J. Math., 26:2 (2003), 503–525 | DOI | MR | Zbl

[22] Pedersen J., Sato K.-I., “Relations between cone-parameter Lévy processes and convolution semigroups”, J. Math. Soc. Japan, 56:2 (2004), 541–559 | DOI | MR | Zbl

[23] Pérez-Abreu V., Rocha-Arteaga A., “Covariance-parameter Lévy processes in the space of trace-class operators”, Infin. Dimens. Anal. Quantum Probab. Relat. Top., 8:1 (2005), 1–22 | DOI | MR

[24] Rocha-Arteaga A., Sato K.-I., Topics in Infinitely Divisible Distributions and Lévy Processes, Aportaciones Mat. Investig., 17, Sociedad Matemática Mexicana, México, 2003, 113 pp. | MR | Zbl

[25] Ressel P., “Bochner's theorem for finite-dimensional conelike semigroups”, Math. Ann., 296:3 (1993), 431–440 | DOI | MR | Zbl

[26] Rosiński J., “Tempered stable processes”, Proceedings of the Second MaPhySto Conference on Lévy Processes: Theory and Applications, ed. O. E. Barndorff-Nielsen, MaPhySto, Aarhus, 2002, 215–219

[27] Rosiński J., “Tempering stable processes”, Stochastic Process. Appl. (to appear) | MR

[28] Sato K.-I., Lévy Processes and Infinitely Divisible Distributions, Cambridge Stud. Adv. Math., 68, Cambridge Univ. Press, Cambridge, 1999, 486 pp. | MR | Zbl

[29] Sato K.-I., “Additive processes and stochastic integrals”, Illinois J. Math., 50:1–4 (2006), 825–851 | MR | Zbl

[30] Schindler W., Measures with Symmetric Properties, Lecture Notes in Math., 1808, Springer-Verlag, Berlin, 2003, 167 pp. | MR | Zbl

[31] Skorokhod A. V., Sluchainye protsessy s nezavisimymi prirascheniyami, Nauka, M., 1986, 320 pp. | MR

[32] Youssfi E. H., “Harmonic analysis on conelike bodies and holomorphic functions on tube domains”, J. Funct. Anal., 155:2 (1998), 381–435 | DOI | MR | Zbl