Mots-clés : random matrices, Lévy measures
@article{TVP_2007_52_1_a5,
author = {O. E. Barndorff-Nielsen and V. P\'erez-Abreu},
title = {Matrix subordinators and related {Upsilon} transformations},
journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
pages = {84--110},
year = {2007},
volume = {52},
number = {1},
language = {en},
url = {http://geodesic.mathdoc.fr/item/TVP_2007_52_1_a5/}
}
O. E. Barndorff-Nielsen; V. Pérez-Abreu. Matrix subordinators and related Upsilon transformations. Teoriâ veroâtnostej i ee primeneniâ, Tome 52 (2007) no. 1, pp. 84-110. http://geodesic.mathdoc.fr/item/TVP_2007_52_1_a5/
[1] Barndorff-Nielsen O. E., Lindner A., “Lévy copulas: dynamics and transforms of Upsilon-type”, Scand. J. Statist. (to appear) | MR
[2] Barndorff-Nielsen O. E., Maejima M., Sato K.-I., “Some classes of multivariate infinitely divisible distributions admitting stochastic integral representation”, Bernoulli, 12:1 (2006), 1–33 | MR | Zbl
[3] Barndorff-Nielsen O. E., Pedersen J., Sato K.-I., Adv. Appl. Probab., 33:1 (Multivariate subordination, self-decomposability and stability), 160–187 | MR | Zbl
[4] Barndorff-Nielsen O. E., Pérez-Abreu V., “Extensions of type $G$ and marginal infinite divisibility”, Teoriya veroyatn. i ee primen., 47:2 (2002), 301–319 | MR | Zbl
[5] Barndorff-Nielsen O. E., Pérez-Abreu V., “On recent results on Type $G$ multivariate laws”, Proceedings of the Second MaPhySto Conference on Lévy Processes: Theory and Applications, eds. O. E. Barndorff-Nielsen, MaPhySto, Aarhus, 2002, 206–210
[6] Barndorff-Nielsen O. E., Pérez-Abreu V., Rocha-Arteaga A., “Mat $G$ random matrices”, Stoch. Models, 22:4 (2006), 723–734 | DOI | MR | Zbl
[7] Barndorff-Nielsen O. E., Thorbjørnsen S., “A connection between free and classical infinite divisibility”, Infin. Dimens. Anal. Quantum Probab. Relat. Top., 7:4 (2004), 573–590 | DOI | MR | Zbl
[8] Barndorff-Nielsen O. E., Thorbjørnsen S., “Regularizing mappings of Lévy measures”, Stochastic Process. Appl., 116:3 (2006), 423–446 | DOI | MR | Zbl
[9] Barndorff-Nielsen O. E., Thorbjørnsen S., Bicontinuity of the Upsilon transformations, Research Report no 25, MaPhySto, Aarhus University, Aarhus, 2004
[10] Bochner S., Harmonic Analysis and the Theory of Probability, Univ. of California Press, Berkeley–Los Angeles, 1955, 176 pp. | MR
[11] Bondesson L., Generalized Gamma Convolutions and Related Classes of Distributions and Densities, Lecture Notes in Statist., 76, Springer-Verlag, New York, 1992, 173 pp. | MR | Zbl
[12] Eaton M. L., Multivariate Statistics – A Vector Space Approach, Wiley, New York, 1983, 512 pp. | MR | Zbl
[13] Griffiths R. C., “Characterization of infinitely divisible multivariate gamma distributions”, J. Multivariate Anal., 15:1 (1984), 13–20 | DOI | MR | Zbl
[14] Gupta A. K., Nagar D. K., Matrix Variate Distributions, Chapman Hall/CRC, Boca Raton, 2000, 367 pp. | MR
[15] Herz C. C., “Bessel functions of matrix argument”, Ann. Math., 61 (1955), 474–523 | DOI | MR | Zbl
[16] Kleinman D. L., Athans M., “The design of suboptimal linear time-varying systems”, IEEE Trans. Automat. Control, 13 (1968), 150–159 | DOI | MR
[17] Lasserre J. B., “A trace inequality for matrix product”, IEEE Trans. Automat. Control, 40:8 (1995), 1500–1501 | DOI | MR | Zbl
[18] Lévy P., “The arithmetical character of the Wishart distribution”, Proc. Cambridge Philos. Soc., 44 (1948), 295–297 | DOI | MR
[19] Maejima M., Rosinski J., “Type $G$ distributions on $R^d$”, J. Theoret. Probab., 15:2 (2002), 323–341 | DOI | MR | Zbl
[20] Mathai A. M., Jacobians of Matrix Transformations and Functions of Matrix Arguments, World Scientific, River Edge, 1997, 435 pp. | MR | Zbl
[21] Pedersen J., Sato K.-I., “Cone-parameter convolution semigroups and their subordination”, Tokyo J. Math., 26:2 (2003), 503–525 | DOI | MR | Zbl
[22] Pedersen J., Sato K.-I., “Relations between cone-parameter Lévy processes and convolution semigroups”, J. Math. Soc. Japan, 56:2 (2004), 541–559 | DOI | MR | Zbl
[23] Pérez-Abreu V., Rocha-Arteaga A., “Covariance-parameter Lévy processes in the space of trace-class operators”, Infin. Dimens. Anal. Quantum Probab. Relat. Top., 8:1 (2005), 1–22 | DOI | MR
[24] Rocha-Arteaga A., Sato K.-I., Topics in Infinitely Divisible Distributions and Lévy Processes, Aportaciones Mat. Investig., 17, Sociedad Matemática Mexicana, México, 2003, 113 pp. | MR | Zbl
[25] Ressel P., “Bochner's theorem for finite-dimensional conelike semigroups”, Math. Ann., 296:3 (1993), 431–440 | DOI | MR | Zbl
[26] Rosiński J., “Tempered stable processes”, Proceedings of the Second MaPhySto Conference on Lévy Processes: Theory and Applications, ed. O. E. Barndorff-Nielsen, MaPhySto, Aarhus, 2002, 215–219
[27] Rosiński J., “Tempering stable processes”, Stochastic Process. Appl. (to appear) | MR
[28] Sato K.-I., Lévy Processes and Infinitely Divisible Distributions, Cambridge Stud. Adv. Math., 68, Cambridge Univ. Press, Cambridge, 1999, 486 pp. | MR | Zbl
[29] Sato K.-I., “Additive processes and stochastic integrals”, Illinois J. Math., 50:1–4 (2006), 825–851 | MR | Zbl
[30] Schindler W., Measures with Symmetric Properties, Lecture Notes in Math., 1808, Springer-Verlag, Berlin, 2003, 167 pp. | MR | Zbl
[31] Skorokhod A. V., Sluchainye protsessy s nezavisimymi prirascheniyami, Nauka, M., 1986, 320 pp. | MR
[32] Youssfi E. H., “Harmonic analysis on conelike bodies and holomorphic functions on tube domains”, J. Funct. Anal., 155:2 (1998), 381–435 | DOI | MR | Zbl