On normal approximation for strongly mixing random fields
Teoriâ veroâtnostej i ee primeneniâ, Tome 52 (2007) no. 1, pp. 60-68

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we estimate the difference $|\mathbf Eh(Z_V)-\mathbf Eh(N)|$, where $Z_V$ is a sum over any finite subset $V$ of the standard lattice $\mathbf Z^d$ of normalized random variables of the strongly mixing random field $\{X_a,\ a\in\mathbf Z^d\}$ (without assuming stationarity) and $N$ is a standard normal random variable for the function $h\colon\mathbf R\to\mathbf R$, which is finite and satisfies the Lipschitz condition. In a particular case, the obtained upper bounds of $|\mathbf Eh(Z_V)-\mathbf Eh(N)|$ in Theorems 3 and 4 are of order $O(|V|^{-1/2})$.
Keywords: normal approximations, bounded Lipschitz metrics, random fields, strong mixing condition, method of Stein.
@article{TVP_2007_52_1_a3,
     author = {J. Sunklodas},
     title = {On normal approximation for strongly mixing random fields},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {60--68},
     publisher = {mathdoc},
     volume = {52},
     number = {1},
     year = {2007},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_2007_52_1_a3/}
}
TY  - JOUR
AU  - J. Sunklodas
TI  - On normal approximation for strongly mixing random fields
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 2007
SP  - 60
EP  - 68
VL  - 52
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TVP_2007_52_1_a3/
LA  - ru
ID  - TVP_2007_52_1_a3
ER  - 
%0 Journal Article
%A J. Sunklodas
%T On normal approximation for strongly mixing random fields
%J Teoriâ veroâtnostej i ee primeneniâ
%D 2007
%P 60-68
%V 52
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TVP_2007_52_1_a3/
%G ru
%F TVP_2007_52_1_a3
J. Sunklodas. On normal approximation for strongly mixing random fields. Teoriâ veroâtnostej i ee primeneniâ, Tome 52 (2007) no. 1, pp. 60-68. http://geodesic.mathdoc.fr/item/TVP_2007_52_1_a3/