On normal approximation for strongly mixing random fields
Teoriâ veroâtnostej i ee primeneniâ, Tome 52 (2007) no. 1, pp. 60-68 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In this paper, we estimate the difference $|\mathbf Eh(Z_V)-\mathbf Eh(N)|$, where $Z_V$ is a sum over any finite subset $V$ of the standard lattice $\mathbf Z^d$ of normalized random variables of the strongly mixing random field $\{X_a,\ a\in\mathbf Z^d\}$ (without assuming stationarity) and $N$ is a standard normal random variable for the function $h\colon\mathbf R\to\mathbf R$, which is finite and satisfies the Lipschitz condition. In a particular case, the obtained upper bounds of $|\mathbf Eh(Z_V)-\mathbf Eh(N)|$ in Theorems 3 and 4 are of order $O(|V|^{-1/2})$.
Keywords: normal approximations, bounded Lipschitz metrics, random fields, strong mixing condition, method of Stein.
@article{TVP_2007_52_1_a3,
     author = {J. Sunklodas},
     title = {On normal approximation for strongly mixing random fields},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {60--68},
     year = {2007},
     volume = {52},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_2007_52_1_a3/}
}
TY  - JOUR
AU  - J. Sunklodas
TI  - On normal approximation for strongly mixing random fields
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 2007
SP  - 60
EP  - 68
VL  - 52
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TVP_2007_52_1_a3/
LA  - ru
ID  - TVP_2007_52_1_a3
ER  - 
%0 Journal Article
%A J. Sunklodas
%T On normal approximation for strongly mixing random fields
%J Teoriâ veroâtnostej i ee primeneniâ
%D 2007
%P 60-68
%V 52
%N 1
%U http://geodesic.mathdoc.fr/item/TVP_2007_52_1_a3/
%G ru
%F TVP_2007_52_1_a3
J. Sunklodas. On normal approximation for strongly mixing random fields. Teoriâ veroâtnostej i ee primeneniâ, Tome 52 (2007) no. 1, pp. 60-68. http://geodesic.mathdoc.fr/item/TVP_2007_52_1_a3/

[1] Barbour A. D., Eagleson G. K., “Multiple comparisons and sums of dissociated random variables”, Adv. Appl. Probab., 17:1 (1985), 147–162 | DOI | MR | Zbl

[2] Bulinskii A. V., Predelnye teoremy v usloviyakh slaboi zavisimosti, Izd-vo MGU, M., 1989, 135 pp.

[3] Bulinski A., Suquet Ch., “Normal approximation for quasi-associated random fields”, Statist. Probab. Lett., 54:2 (2001), 215–226 | DOI | MR | Zbl

[4] Doukhan P., Mixing. Properties and Examples, Lecture Notes in Statist., 85, Springer-Verlag, New York, 1994, 142 pp. | MR | Zbl

[5] Hall P., Heyde C. C., Martingale Limit Theory and Its Applications, Academic Press, New York–London, 1980, 308 pp. | MR

[6] Ibragimov I. A., Linnik Yu. V., Nezavisimye i statsionarno svyazannye velichiny, Nauka, M., 1965, 524 pp.

[7] Lin Z., Lu C., Limit Theory for Mixing Dependent Random Variables, Kluwer Science Press, Dordrecht–New York, 1996, 426 pp. | MR

[8] Rio E., “Sur le théorème de Berry–Esseen pour les suites faiblement dépendantes”, Probab. Theory Related Fields, 104:2 (1996), 255–282 | MR | Zbl

[9] Stein C., “A bound for the error in the normal approximation to the distribution of a sum of dependent random variables”, Proceedings of the Sixth Berkeley Symposium on Mathematical Statistics and Probability. V. II: Probability Theory (Berkeley, 1970/1971), Univ. California Press, 1972, 583–602 | MR | Zbl

[10] Sunklodas I., “Otsenka ogranichennoi metriki Lipshitsa dlya summ slabo zavisimykh sluchainykh velichin”, Litov. matem. sb., 29:2 (1989), 385–393 | MR | Zbl

[11] Sunklodas J., “Approximation of distributions of sums of weakly dependent random variables by the normal distribution”, Limit Theorems of Probability Theory, eds. R. V. Gamkrelidze, Yu. V. Prokhorov, and V. Statulevičius, Springer-Verlag, Berlin, 2000, 113–165 | Zbl

[12] Tikhomirov A. N., “O skorosti skhodimosti v tsentralnoi predelnoi teoreme dlya slabozavisimykh velichin”, Teoriya veroyatn. i ee primen., 25:4 (1980), 800–818 | MR | Zbl

[13] Utev S. A., “Ob odnom sposobe issledovaniya summ slabozavisimykh sluchainykh velichin”, Sib. matem. zhurn., 32:4 (1991), 165–183 | MR

[14] Zuparov T. M., “O skorosti skhodimosti v tsentralnoi predelnoi teoreme dlya slabozavisimykh velichin”, Teoriya veroyatn. i ee primen., 36:4 (1991), 635–644 | MR