Keywords: transaction costs, arbitrage portfolios, measurable set-valued maps, supports of the regular conditional distributions.
@article{TVP_2007_52_1_a2,
author = {D. B. Rokhlin},
title = {Constructive no-arbitrage criterion under transaction costs in the case of finite discrete time},
journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
pages = {41--59},
year = {2007},
volume = {52},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TVP_2007_52_1_a2/}
}
TY - JOUR AU - D. B. Rokhlin TI - Constructive no-arbitrage criterion under transaction costs in the case of finite discrete time JO - Teoriâ veroâtnostej i ee primeneniâ PY - 2007 SP - 41 EP - 59 VL - 52 IS - 1 UR - http://geodesic.mathdoc.fr/item/TVP_2007_52_1_a2/ LA - ru ID - TVP_2007_52_1_a2 ER -
D. B. Rokhlin. Constructive no-arbitrage criterion under transaction costs in the case of finite discrete time. Teoriâ veroâtnostej i ee primeneniâ, Tome 52 (2007) no. 1, pp. 41-59. http://geodesic.mathdoc.fr/item/TVP_2007_52_1_a2/
[1] Beer G., “A Polish topology for the closed subsets of a Polish space”, Proc. Amer. Math. Soc., 113:4 (1991), 1123–1133 | DOI | MR | Zbl
[2] Dalang R. C., Morton A., Willinger W., “Equivalent martingale measures and no-arbitrage in stochastic securities market models”, Stochastics Stochastics Rep., 29:2 (1990), 185–201 | MR | Zbl
[3] Grigoriev P. G., “On low dimensional case in the fundamental asset pricing theorem with transaction costs”, Statist. Decisions, 23:1 (2005), 33–48 | DOI | MR | Zbl
[4] Himmelberg C. J., “Measurable relations”, Fund. Math., 87 (1975), 53–72 | MR | Zbl
[5] Jacod J., Shiryaev A. N., “Local martingales and the fundamental asset pricing theorems in the discrete-time case”, Finance Stoch., 2:3 (1998), 259–273 | DOI | MR | Zbl
[6] Jouini E., Kallal H., “Martingales and arbitrage in securities markets with transaction costs”, J. Econom. Theory, 66:1 (1995), 178–197 | DOI | MR | Zbl
[7] Kabanov Y. M., “Hedging and liquidation under transaction costs in currency markets”, Finance Stoch., 3:2 (1999), 237–248 | DOI | MR | Zbl
[8] Kabanov Y., Rásonyi M., Stricker C., “No-arbitrage criteria for financial markets with efficient friction”, Finance Stoch., 6:3 (2002), 371–382 | DOI | MR | Zbl
[9] Kabanov Y., Rásonyi M., Stricker C., “On the closedness of sums of convex cones in $L^0$ and the robust no-arbitrage property”, Finance Stoch., 7:3 (2003), 403–411 | DOI | MR | Zbl
[10] Kabanov Y., Stricker C., “The Harrison–Pliska arbitrage pricing theorem under transaction costs”, J. Math. Econom., 35:2 (2001), 185–196 | DOI | MR | Zbl
[11] Kusraev A. G., Kutateladze S. S., Subdifferentsialy. Teoriya i prilozheniya, Ch. I, Izd-vo IM SO RAN, Novosibirsk, 2002, 381 pp. | MR | Zbl
[12] Levin V. L., Vypuklyi analiz v prostranstvakh izmerimykh funktsii i ego primeneniya v matematike i ekonomike, Nauka, M., 1985, 352 pp. | MR
[13] Rokafellar R., Vypuklyi analiz, Mir, M., 1973, 469 pp.
[14] Rokhlin D. B., “Rasshirennaya versiya teoremy Dalanga–Mortona–Villindzhera pri vypuklykh ogranicheniyakh na portfel”, Teoriya veroyatn. i ee primen., 49:3 (2004), 503–521 | MR | Zbl
[15] Rokhlin D. B., “Zadacha o martingalnom vybore v sluchae konechnogo diskretnogo vremeni”, Teoriya veroyatn. i ee primen., 50:3 (2005), 480–500 | MR
[16] Schachermayer W., “The fundamental theorem of asset pricing under proportional transaction costs in finite discrete time”, Math. Finance, 14:1 (2004), 19–48 | DOI | MR | Zbl
[17] Srivastava S. M., A Course on Borel Sets, Grad. Texts in Math., 180, Springer-Verlag, New York, 1998, 261 pp. | MR | Zbl