A lemma on stochastic majorization and properties of the Student distribution
Teoriâ veroâtnostej i ee primeneniâ, Tome 52 (2007) no. 1, pp. 199-203
Cet article a éte moissonné depuis la source Math-Net.Ru
A general lemma on stochastic majorization implies lower and upper bounds for the Student distribution function. Relations to estimation of the normal mean by confidence intervals are discussed.
Keywords:
confidence intervals
Mots-clés : normal distribution.
Mots-clés : normal distribution.
@article{TVP_2007_52_1_a15,
author = {A. M. Kagan and A. V. Nagaev},
title = {A lemma on stochastic majorization and properties of the {Student} distribution},
journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
pages = {199--203},
year = {2007},
volume = {52},
number = {1},
language = {en},
url = {http://geodesic.mathdoc.fr/item/TVP_2007_52_1_a15/}
}
TY - JOUR AU - A. M. Kagan AU - A. V. Nagaev TI - A lemma on stochastic majorization and properties of the Student distribution JO - Teoriâ veroâtnostej i ee primeneniâ PY - 2007 SP - 199 EP - 203 VL - 52 IS - 1 UR - http://geodesic.mathdoc.fr/item/TVP_2007_52_1_a15/ LA - en ID - TVP_2007_52_1_a15 ER -
A. M. Kagan; A. V. Nagaev. A lemma on stochastic majorization and properties of the Student distribution. Teoriâ veroâtnostej i ee primeneniâ, Tome 52 (2007) no. 1, pp. 199-203. http://geodesic.mathdoc.fr/item/TVP_2007_52_1_a15/
[1] Kramer G., Matematicheskie metody statistiki, Mir, M., 1975, 648 pp. | MR
[2] Kagan A., “What students can learn from tables of basic distributions”, Internat. J. Math. Ed. Sci. Tech., 30:6 (1999), 928–934 | DOI | MR
[3] Marshall A., Olkin I., Neravenstva: teoriya mazhorizatsii i ee prilozheniya, Mir, M., 1983, 574 pp. | MR | Zbl
[4] Shao J., Mathematical Statistics, Springer-Verlag, New York, 2003, 591 pp. | MR