A lemma on stochastic majorization and properties of the Student distribution
Teoriâ veroâtnostej i ee primeneniâ, Tome 52 (2007) no. 1, pp. 199-203 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A general lemma on stochastic majorization implies lower and upper bounds for the Student distribution function. Relations to estimation of the normal mean by confidence intervals are discussed.
Keywords: confidence intervals
Mots-clés : normal distribution.
@article{TVP_2007_52_1_a15,
     author = {A. M. Kagan and A. V. Nagaev},
     title = {A lemma on stochastic majorization and properties of the {Student} distribution},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {199--203},
     year = {2007},
     volume = {52},
     number = {1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TVP_2007_52_1_a15/}
}
TY  - JOUR
AU  - A. M. Kagan
AU  - A. V. Nagaev
TI  - A lemma on stochastic majorization and properties of the Student distribution
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 2007
SP  - 199
EP  - 203
VL  - 52
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TVP_2007_52_1_a15/
LA  - en
ID  - TVP_2007_52_1_a15
ER  - 
%0 Journal Article
%A A. M. Kagan
%A A. V. Nagaev
%T A lemma on stochastic majorization and properties of the Student distribution
%J Teoriâ veroâtnostej i ee primeneniâ
%D 2007
%P 199-203
%V 52
%N 1
%U http://geodesic.mathdoc.fr/item/TVP_2007_52_1_a15/
%G en
%F TVP_2007_52_1_a15
A. M. Kagan; A. V. Nagaev. A lemma on stochastic majorization and properties of the Student distribution. Teoriâ veroâtnostej i ee primeneniâ, Tome 52 (2007) no. 1, pp. 199-203. http://geodesic.mathdoc.fr/item/TVP_2007_52_1_a15/

[1] Kramer G., Matematicheskie metody statistiki, Mir, M., 1975, 648 pp. | MR

[2] Kagan A., “What students can learn from tables of basic distributions”, Internat. J. Math. Ed. Sci. Tech., 30:6 (1999), 928–934 | DOI | MR

[3] Marshall A., Olkin I., Neravenstva: teoriya mazhorizatsii i ee prilozheniya, Mir, M., 1983, 574 pp. | MR | Zbl

[4] Shao J., Mathematical Statistics, Springer-Verlag, New York, 2003, 591 pp. | MR