@article{TVP_2007_52_1_a14,
author = {R. Buckdahn and H.-J. Engelbert},
title = {On the continuity of weak solutions of backward stochastic differential equations},
journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
pages = {190--199},
year = {2007},
volume = {52},
number = {1},
language = {en},
url = {http://geodesic.mathdoc.fr/item/TVP_2007_52_1_a14/}
}
TY - JOUR AU - R. Buckdahn AU - H.-J. Engelbert TI - On the continuity of weak solutions of backward stochastic differential equations JO - Teoriâ veroâtnostej i ee primeneniâ PY - 2007 SP - 190 EP - 199 VL - 52 IS - 1 UR - http://geodesic.mathdoc.fr/item/TVP_2007_52_1_a14/ LA - en ID - TVP_2007_52_1_a14 ER -
R. Buckdahn; H.-J. Engelbert. On the continuity of weak solutions of backward stochastic differential equations. Teoriâ veroâtnostej i ee primeneniâ, Tome 52 (2007) no. 1, pp. 190-199. http://geodesic.mathdoc.fr/item/TVP_2007_52_1_a14/
[1] Antonelli F., Ma J., “Weak solutions of forward-backward SDE's”, Stochastic Anal. Appl., 21:3 (2003), 493–514 | DOI | MR | Zbl
[2] Buckdahn R., Engelbert H.-J., Răşcanu A., “On weak solutions of backward stochastic differential equations”, Teoriya veroyatn. i ee primen., 49:1 (2004), 70–108 | MR | Zbl
[3] Buckdahn R., Engelbert H.-J., “A backward stochastic differential equations without strong solution”, Teoriya veroyatn. i ee primen., 50:2 (2005), 390–396 | MR | Zbl
[4] Buckdahn R., Engelbert H.-J., “On the notion of weak solutions of backward stochastic differential equations”, Proceedings of the Fourth Colloquium on Backward Stochastic Differential Equations and Their Applications (Shanghai, 2005) (to appear)
[5] Dellacherie C., Meyer P.-A., Probabilités et potentiel, Chapitres I à IV, Hermann, Paris, 1975, 291 pp. | MR | Zbl
[6] Dellasheri K., Emkosti i sluchainye protsessy, Mir, M., 1975, 192 pp. | MR
[7] Delarue F., Guatteri G., Weak solvability theorem for forward-backward SDE's, Preprint, Université Paris-VII, Paris, 2005; http://hal.archives-ouvertes.fr/hal-00004089/en/
[8] El Karoui N., Mazliak L.(eds.), Backward Stochastic Differential Equations, Pitman Res. Notes Math. Ser., 364, Longman, Harlow, 1997, 221 pp. | MR
[9] Lepeltier J.-P., San Martin J., “Backward stochastic differential equations with continuous coefficient”, Statist. Probab. Lett., 32:4 (1997), 425–430 | DOI | MR | Zbl
[10] Meyer P.-A., Zheng W. A., “Tightness criteria for laws of semimartingales”, Ann. Inst. H. Poincaré, Probab. Statist., 20:4 (1984), 353–372 | MR | Zbl
[11] Pardoux É., Peng S. G., “Adapted solution of a backward stochastic differential equation”, Systems Control Lett., 14:1 (1980), 55–61 | DOI | MR
[12] Revuz D., Yor M., Continuous Martingales and Brownian Motion, Grundlehren Math. Wiss., 293, Springer-Verlag, Berlin, 1991, 533 pp. | MR | Zbl
[13] Watanabe S., Yamada T., “On the uniqueness of solutions of stochastic differential equations”, J. Math. Kyoto Univ., 11 (1971), 155–167 | MR | Zbl