On the continuity of weak solutions of backward stochastic differential equations
Teoriâ veroâtnostej i ee primeneniâ, Tome 52 (2007) no. 1, pp. 190-199 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In the present paper, the notion of a weak solution of a general backward stochastic differential equation (BSDE), which was introduced by the authors and A. Rǎşcanu in [Theory Probab. Appl., 49 (2005), pp. 16–50], will be discussed. The relationship between continuity of solutions, pathwise uniqueness, uniqueness in law, and existence of a pathwise unique strong solution is investigated. The main result asserts that if all weak solutions of a BSDE are continuous, then the solution is pathwise unique. One should notice that this is a specific result for BSDEs and there is of course no counterpart for (forward) stochastic differential equations (SDEs). As a consequence, if a weak solution exists and all solutions are continuous, then there exists a pathwise unique solution and this solution is strong. Moreover, if the driving process is a continuous local martingale satisfying the previsible representation property, then the converse is also true. In other words, the existence of discontinuous solutions to a BSDE is a natural phenomenon, whenever pathwise uniqueness or, in particular, uniqueness in law is not satisfied. Examples of discontinuous solutions of a certain BSDE were already given in [R. Buckdahn and H.-J. Engelbert, Proceedings of the Fourth Colloquium on Backward Stochastic Differential Equations and Their Applications, to appear]. This was the motivation for the present paper which is aimed at exploring the general situation.
Keywords: backward stochastic differential equations, weak solutions, strong solutions, uniqueness in law, pathwise uniqueness, continuity of solutions, discontinuity of solutions.
@article{TVP_2007_52_1_a14,
     author = {R. Buckdahn and H.-J. Engelbert},
     title = {On the continuity of weak solutions of backward stochastic differential equations},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {190--199},
     year = {2007},
     volume = {52},
     number = {1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TVP_2007_52_1_a14/}
}
TY  - JOUR
AU  - R. Buckdahn
AU  - H.-J. Engelbert
TI  - On the continuity of weak solutions of backward stochastic differential equations
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 2007
SP  - 190
EP  - 199
VL  - 52
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TVP_2007_52_1_a14/
LA  - en
ID  - TVP_2007_52_1_a14
ER  - 
%0 Journal Article
%A R. Buckdahn
%A H.-J. Engelbert
%T On the continuity of weak solutions of backward stochastic differential equations
%J Teoriâ veroâtnostej i ee primeneniâ
%D 2007
%P 190-199
%V 52
%N 1
%U http://geodesic.mathdoc.fr/item/TVP_2007_52_1_a14/
%G en
%F TVP_2007_52_1_a14
R. Buckdahn; H.-J. Engelbert. On the continuity of weak solutions of backward stochastic differential equations. Teoriâ veroâtnostej i ee primeneniâ, Tome 52 (2007) no. 1, pp. 190-199. http://geodesic.mathdoc.fr/item/TVP_2007_52_1_a14/

[1] Antonelli F., Ma J., “Weak solutions of forward-backward SDE's”, Stochastic Anal. Appl., 21:3 (2003), 493–514 | DOI | MR | Zbl

[2] Buckdahn R., Engelbert H.-J., Răşcanu A., “On weak solutions of backward stochastic differential equations”, Teoriya veroyatn. i ee primen., 49:1 (2004), 70–108 | MR | Zbl

[3] Buckdahn R., Engelbert H.-J., “A backward stochastic differential equations without strong solution”, Teoriya veroyatn. i ee primen., 50:2 (2005), 390–396 | MR | Zbl

[4] Buckdahn R., Engelbert H.-J., “On the notion of weak solutions of backward stochastic differential equations”, Proceedings of the Fourth Colloquium on Backward Stochastic Differential Equations and Their Applications (Shanghai, 2005) (to appear)

[5] Dellacherie C., Meyer P.-A., Probabilités et potentiel, Chapitres I à IV, Hermann, Paris, 1975, 291 pp. | MR | Zbl

[6] Dellasheri K., Emkosti i sluchainye protsessy, Mir, M., 1975, 192 pp. | MR

[7] Delarue F., Guatteri G., Weak solvability theorem for forward-backward SDE's, Preprint, Université Paris-VII, Paris, 2005; http://hal.archives-ouvertes.fr/hal-00004089/en/

[8] El Karoui N., Mazliak L.(eds.), Backward Stochastic Differential Equations, Pitman Res. Notes Math. Ser., 364, Longman, Harlow, 1997, 221 pp. | MR

[9] Lepeltier J.-P., San Martin J., “Backward stochastic differential equations with continuous coefficient”, Statist. Probab. Lett., 32:4 (1997), 425–430 | DOI | MR | Zbl

[10] Meyer P.-A., Zheng W. A., “Tightness criteria for laws of semimartingales”, Ann. Inst. H. Poincaré, Probab. Statist., 20:4 (1984), 353–372 | MR | Zbl

[11] Pardoux É., Peng S. G., “Adapted solution of a backward stochastic differential equation”, Systems Control Lett., 14:1 (1980), 55–61 | DOI | MR

[12] Revuz D., Yor M., Continuous Martingales and Brownian Motion, Grundlehren Math. Wiss., 293, Springer-Verlag, Berlin, 1991, 533 pp. | MR | Zbl

[13] Watanabe S., Yamada T., “On the uniqueness of solutions of stochastic differential equations”, J. Math. Kyoto Univ., 11 (1971), 155–167 | MR | Zbl