Estimates for moduli of smoothness of distribution functions
Teoriâ veroâtnostej i ee primeneniâ, Tome 52 (2007) no. 1, pp. 186-190 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We give upper bounds for the usual moduli of smoothness of a distribution function $F$ in terms of its characteristic function $\varphi$. In particular, we complete some known estimates of the concentration function of $F$. Our approach uses a new version of the classical Berry–Esseen smoothing inequality.
Keywords: modulus of smoothness, concentration function, characteristic function, smoothing inequality.
@article{TVP_2007_52_1_a13,
     author = {J. A. Adell and A. Lekuona},
     title = {Estimates for moduli of smoothness of distribution functions},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {186--190},
     year = {2007},
     volume = {52},
     number = {1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TVP_2007_52_1_a13/}
}
TY  - JOUR
AU  - J. A. Adell
AU  - A. Lekuona
TI  - Estimates for moduli of smoothness of distribution functions
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 2007
SP  - 186
EP  - 190
VL  - 52
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TVP_2007_52_1_a13/
LA  - en
ID  - TVP_2007_52_1_a13
ER  - 
%0 Journal Article
%A J. A. Adell
%A A. Lekuona
%T Estimates for moduli of smoothness of distribution functions
%J Teoriâ veroâtnostej i ee primeneniâ
%D 2007
%P 186-190
%V 52
%N 1
%U http://geodesic.mathdoc.fr/item/TVP_2007_52_1_a13/
%G en
%F TVP_2007_52_1_a13
J. A. Adell; A. Lekuona. Estimates for moduli of smoothness of distribution functions. Teoriâ veroâtnostej i ee primeneniâ, Tome 52 (2007) no. 1, pp. 186-190. http://geodesic.mathdoc.fr/item/TVP_2007_52_1_a13/

[1] Adell J. A., Lekuona A., “Berry–Esseen bounds for standardized subordinators via moduli of smoothness”, J. Theoret. Probab. (to appear)

[2] Adell J. A., Sangüesa C., “Real inversion formulas with rates of convergence”, Acta Math. Hungar., 100:4 (2003), 293–302 | DOI | MR | Zbl

[3] Adell J. A., Sangüesa C., “Approximation by $B$-spline convolution operators. A probabilistic approach”, J. Comput. Appl. Math., 174:1 (2005), 79–99 | DOI | MR | Zbl

[4] Arak T. V., Zaitsev A. Yu., “Ravnomernye predelnye teoremy dlya summ nezavisimykh sluchainykh velichin”, Tr. MIAN, 174, 1986, 1–214 | MR | Zbl

[5] Bentkus V., Götze F., Paulauskas V., “Bounds for the accuracy of Poissonian approximations of stable laws”, Stochastic Process. Appl., 65:1 (1996), 55–68 | DOI | MR | Zbl

[6] DeVore R. A., Lorentz G. G., Constructive Approximation, Grundlehren Math. Wiss., 303, Springer-Verlag, Berlin, 1993, 449 pp. | MR | Zbl

[7] Deshouillers J.-M., Freiman G. A., Yudin A. A., “On bounds for the concentration function, I”, Astérisque, 258, 1999, 425–436 | MR | Zbl

[8] Ditzian Z., Totik V., Moduli of Smoothness, Springer Ser. Comput. Math., 9, Springer-Verlag, New York, 1987, 227 pp. | MR | Zbl

[9] Esseen C. G., “On the Kolmogorov–Rogozin inequality for the concentration function”, Z. Wahrscheinlichkeitstheor. Verw. Geb., 5 (1966), 210–216 | DOI | MR | Zbl

[10] Petrov V. V., Limit Theorems of Probability Theory, Oxford Stud. Probab., 4, Clarendon Press, New York, 1995, 292 pp. | MR | Zbl

[11] Salikhov N. P., “Otsenka funktsii kontsentratsii metodom Esseena”, Teoriya veroyatn. i ee primen., 41:3 (1996), 561–577 | MR | Zbl

[12] Stef A., Tenenbaum G., “Inversion de Laplace effective”, Ann. Probab., 29 (2001), 558–575 | DOI | MR | Zbl