Rate of convergence to the semicircle law for the Gaussian orthogonal ensemble
Teoriâ veroâtnostej i ee primeneniâ, Tome 52 (2007) no. 1, pp. 180-185

Voir la notice de l'article provenant de la source Math-Net.Ru

It is shown that the Kolmogorov distance between the expected spectral distribution function of an $n\times n$ matrix from the Gaussian orthogonal ensemble and the distribution function of the semicircle law is of order $O(n^{-1})$.
Mots-clés : random matrix, Gaussian ensemble.
Keywords: semicircle law, Hermite function
@article{TVP_2007_52_1_a12,
     author = {D. A. Timushev and A. N. Tikhomirov and A. A. Kholopov},
     title = {Rate of convergence to the semicircle law for the {Gaussian} orthogonal ensemble},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {180--185},
     publisher = {mathdoc},
     volume = {52},
     number = {1},
     year = {2007},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_2007_52_1_a12/}
}
TY  - JOUR
AU  - D. A. Timushev
AU  - A. N. Tikhomirov
AU  - A. A. Kholopov
TI  - Rate of convergence to the semicircle law for the Gaussian orthogonal ensemble
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 2007
SP  - 180
EP  - 185
VL  - 52
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TVP_2007_52_1_a12/
LA  - ru
ID  - TVP_2007_52_1_a12
ER  - 
%0 Journal Article
%A D. A. Timushev
%A A. N. Tikhomirov
%A A. A. Kholopov
%T Rate of convergence to the semicircle law for the Gaussian orthogonal ensemble
%J Teoriâ veroâtnostej i ee primeneniâ
%D 2007
%P 180-185
%V 52
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TVP_2007_52_1_a12/
%G ru
%F TVP_2007_52_1_a12
D. A. Timushev; A. N. Tikhomirov; A. A. Kholopov. Rate of convergence to the semicircle law for the Gaussian orthogonal ensemble. Teoriâ veroâtnostej i ee primeneniâ, Tome 52 (2007) no. 1, pp. 180-185. http://geodesic.mathdoc.fr/item/TVP_2007_52_1_a12/