Rate of convergence to the semicircle law for the Gaussian orthogonal ensemble
Teoriâ veroâtnostej i ee primeneniâ, Tome 52 (2007) no. 1, pp. 180-185
Voir la notice de l'article provenant de la source Math-Net.Ru
It is shown that the Kolmogorov distance between the expected spectral distribution function of an $n\times n$ matrix from the Gaussian orthogonal ensemble and the distribution function of the semicircle law is of order $O(n^{-1})$.
Mots-clés :
random matrix, Gaussian ensemble.
Keywords: semicircle law, Hermite function
Keywords: semicircle law, Hermite function
@article{TVP_2007_52_1_a12,
author = {D. A. Timushev and A. N. Tikhomirov and A. A. Kholopov},
title = {Rate of convergence to the semicircle law for the {Gaussian} orthogonal ensemble},
journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
pages = {180--185},
publisher = {mathdoc},
volume = {52},
number = {1},
year = {2007},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TVP_2007_52_1_a12/}
}
TY - JOUR AU - D. A. Timushev AU - A. N. Tikhomirov AU - A. A. Kholopov TI - Rate of convergence to the semicircle law for the Gaussian orthogonal ensemble JO - Teoriâ veroâtnostej i ee primeneniâ PY - 2007 SP - 180 EP - 185 VL - 52 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TVP_2007_52_1_a12/ LA - ru ID - TVP_2007_52_1_a12 ER -
%0 Journal Article %A D. A. Timushev %A A. N. Tikhomirov %A A. A. Kholopov %T Rate of convergence to the semicircle law for the Gaussian orthogonal ensemble %J Teoriâ veroâtnostej i ee primeneniâ %D 2007 %P 180-185 %V 52 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/TVP_2007_52_1_a12/ %G ru %F TVP_2007_52_1_a12
D. A. Timushev; A. N. Tikhomirov; A. A. Kholopov. Rate of convergence to the semicircle law for the Gaussian orthogonal ensemble. Teoriâ veroâtnostej i ee primeneniâ, Tome 52 (2007) no. 1, pp. 180-185. http://geodesic.mathdoc.fr/item/TVP_2007_52_1_a12/