Superlarge deviation probabilities for sums of independent random variables with exponential decreasing distribution
Teoriâ veroâtnostej i ee primeneniâ, Tome 52 (2007) no. 1, pp. 175-179

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper large deviation probabilities of sums of independent identically distributed random variables are studied, whose distribution function has an exponential decreasing tail.
Keywords: independent random variables, large deviations, regular varying function.
@article{TVP_2007_52_1_a11,
     author = {L. V. Rozovskii},
     title = {Superlarge deviation probabilities for sums of independent random variables with exponential decreasing distribution},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {175--179},
     publisher = {mathdoc},
     volume = {52},
     number = {1},
     year = {2007},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_2007_52_1_a11/}
}
TY  - JOUR
AU  - L. V. Rozovskii
TI  - Superlarge deviation probabilities for sums of independent random variables with exponential decreasing distribution
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 2007
SP  - 175
EP  - 179
VL  - 52
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TVP_2007_52_1_a11/
LA  - ru
ID  - TVP_2007_52_1_a11
ER  - 
%0 Journal Article
%A L. V. Rozovskii
%T Superlarge deviation probabilities for sums of independent random variables with exponential decreasing distribution
%J Teoriâ veroâtnostej i ee primeneniâ
%D 2007
%P 175-179
%V 52
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TVP_2007_52_1_a11/
%G ru
%F TVP_2007_52_1_a11
L. V. Rozovskii. Superlarge deviation probabilities for sums of independent random variables with exponential decreasing distribution. Teoriâ veroâtnostej i ee primeneniâ, Tome 52 (2007) no. 1, pp. 175-179. http://geodesic.mathdoc.fr/item/TVP_2007_52_1_a11/