Superlarge deviation probabilities for sums of independent random variables with exponential decreasing distribution
Teoriâ veroâtnostej i ee primeneniâ, Tome 52 (2007) no. 1, pp. 175-179 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In this paper large deviation probabilities of sums of independent identically distributed random variables are studied, whose distribution function has an exponential decreasing tail.
Keywords: independent random variables, large deviations, regular varying function.
@article{TVP_2007_52_1_a11,
     author = {L. V. Rozovskii},
     title = {Superlarge deviation probabilities for sums of independent random variables with exponential decreasing distribution},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {175--179},
     year = {2007},
     volume = {52},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_2007_52_1_a11/}
}
TY  - JOUR
AU  - L. V. Rozovskii
TI  - Superlarge deviation probabilities for sums of independent random variables with exponential decreasing distribution
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 2007
SP  - 175
EP  - 179
VL  - 52
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TVP_2007_52_1_a11/
LA  - ru
ID  - TVP_2007_52_1_a11
ER  - 
%0 Journal Article
%A L. V. Rozovskii
%T Superlarge deviation probabilities for sums of independent random variables with exponential decreasing distribution
%J Teoriâ veroâtnostej i ee primeneniâ
%D 2007
%P 175-179
%V 52
%N 1
%U http://geodesic.mathdoc.fr/item/TVP_2007_52_1_a11/
%G ru
%F TVP_2007_52_1_a11
L. V. Rozovskii. Superlarge deviation probabilities for sums of independent random variables with exponential decreasing distribution. Teoriâ veroâtnostej i ee primeneniâ, Tome 52 (2007) no. 1, pp. 175-179. http://geodesic.mathdoc.fr/item/TVP_2007_52_1_a11/

[1] Rozovskii L. V., “O sverkhbolshikh ukloneniyakh summy nezavisimykh sluchainykh velichin s obschim absolyutno nepreryvnym raspredeleniem, udovletvoryayuschim usloviyu Kramera”, Teoriya veroyatn. i ee primen., 48:1 (2003), 78–103 | MR

[2] Borovkov A. A., Rogozin B. A., “O tsentralnoi predelnoi teoreme v mnogomernom sluchae”, Teoriya veroyatn. i ee primen., 10:1 (1965), 61–69 | MR | Zbl

[3] Rozovskii L. V., “Veroyatnosti bolshikh uklonenii dlya nekotorykh klassov raspredelenii, udovletvoryayuschikh usloviyu Kramera”, Zapiski nauchn. sem. POMI, 298, 2003, 161–185 | MR | Zbl

[4] Rozovskii L. V., “O nizhnei granitse veroyatnostei bolshikh uklonenii dlya vyborochnogo srednego pri vypolnenii usloviya Kramera”, Zapiski nauchn. sem. POMI, 278, 2001, 208–224 | MR | Zbl

[5] Borovkov A. A., Mogulskii A. A., “O bolshikh i sverkhbolshikh ukloneniyakh summ nezavisimykh sluchainykh vektorov pri vypolnenii usloviya Kramera. I”, Teoriya veroyatn. i ee primen., 51:2 (2006), 260–294 | MR