Independent linear statistics on the two-dimensional torus
Teoriâ veroâtnostej i ee primeneniâ, Tome 52 (2007) no. 1, pp. 3-20 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Let $X=\mathbf T^2$ be the two-dimensional torus, $\mathrm{Aut}(\mathbf T^2)$ be the group of topological automorphisms of $\mathbf T^2$, $\Gamma(\mathbf T^2)$ be the set of Gaussian distributions on $\mathbf T^2$, and $\xi_1$, $\xi_2$ be independent random variables taking on values in $\mathbf T^2$ and having distributions $\mu_j$ with the nonvanishing characteristic functions. Consider $\delta\in\mathrm{Aut}(\mathbf T^2)$ and assume that the linear forms $L_1=\xi_1+\xi_2$ and $L_2=\xi_1+\delta\xi_2$ are independent. We give the description of possible distributions $\mu_j$ depending on $\delta$. In particular we give the complete description of $\delta$ such that the independence of $L_1$ and $L_2$ implies that $\mu_1,\mu_2\in\Gamma(\mathbf T^2)$. It turned out that the corresponding Gaussian distributions are either degenerate or concentrated on shifts of the same dense in $\mathbf T^2$ one-parameter subgroup.
Keywords: independent linear statistics, two-dimensional torus, topological automorphism.
@article{TVP_2007_52_1_a0,
     author = {M. V. Mironyuk and G. M. Feldman},
     title = {Independent linear statistics on the two-dimensional torus},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {3--20},
     year = {2007},
     volume = {52},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_2007_52_1_a0/}
}
TY  - JOUR
AU  - M. V. Mironyuk
AU  - G. M. Feldman
TI  - Independent linear statistics on the two-dimensional torus
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 2007
SP  - 3
EP  - 20
VL  - 52
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TVP_2007_52_1_a0/
LA  - ru
ID  - TVP_2007_52_1_a0
ER  - 
%0 Journal Article
%A M. V. Mironyuk
%A G. M. Feldman
%T Independent linear statistics on the two-dimensional torus
%J Teoriâ veroâtnostej i ee primeneniâ
%D 2007
%P 3-20
%V 52
%N 1
%U http://geodesic.mathdoc.fr/item/TVP_2007_52_1_a0/
%G ru
%F TVP_2007_52_1_a0
M. V. Mironyuk; G. M. Feldman. Independent linear statistics on the two-dimensional torus. Teoriâ veroâtnostej i ee primeneniâ, Tome 52 (2007) no. 1, pp. 3-20. http://geodesic.mathdoc.fr/item/TVP_2007_52_1_a0/

[1] Skitovich V. P., “Ob odnom svoistve normalnogo raspredeleniya.”, Dokl. AN SSSR, 89:2 (1953), 217–219

[2] Darmois G., “Analyse générale des liaisons stochastiques”, Rev. Inst. Internat. Statistique, 21 (1953), 2–8 | DOI | MR | Zbl

[3] Ghurye S. G., Olkin I., “A characterization of the multivariate normal distrubution”, Ann. Math. Statist., 33 (1962), 533–541 | DOI | MR | Zbl

[4] Baryshnikov Y., Eisenberg B., Stadje W., “Independent variables with independent sum and difference: $S^1$-case”, J. Multivariate Anal., 45:2 (1993), 161–170 | DOI | MR | Zbl

[5] Feldman G. M., “A characterization of the Gaussian distribution on Abelian groups”, Probab. Theory Related Fields, 126:1 (2003), 91–102 | DOI | MR | Zbl

[6] Feldman G. M., “On the Heyde theorem for finite abelian groups”, J. Theoret. Probab., 17:4 (2004), 929–941 | DOI | MR | Zbl

[7] Feldman G. M., “On a characterization theorem for locally compact abelian groups”, Probab. Theory Related Fields, 133:3 (2005), 345–357 | DOI | MR | Zbl

[8] Feldman G. M., Graczyk P., “On the Skitovich–Darmois theorem on compact abelian groups”, J. Theoret. Probab., 13:3 (2000), 859–869 | DOI | MR | Zbl

[9] Graczyk P., Loeb J.-J., “A Bernstein property of measures on groups and symmetric spaces”, Probab. Math. Statist., 20:1 (2000), 141–149 | MR | Zbl

[10] Heyer H., Rall C., “Gauss'she Wahrscheinlichkeitsmasse auf Corwinschen Gruppen”, Math. Z., 128:4 (1972), 343–361 | DOI | MR | Zbl

[11] Neuenschwander D., “Gauss measures in the sense of Bernstein on the Heisenberg group”, Probab. Math. Statist., 14:2 (1993), 253–256 | MR | Zbl

[12] Neuenschwander D., Roynette B., Schott R., “Characterizations of Gaussian distributions on simply connected nilpotent Lie groups and symmetric spaces”, C. R. Acad. Sci. Paris, 324:1 (1997), 87–92 | MR | Zbl

[13] Prakasa Rao B. L. S., “O kharakterizatsii gaussovskikh mer na lokalno kompaktnykh abelevykh gruppakh”, Matem. zametki, 22:5 (1977), 759–762 | MR | Zbl

[14] Rukhin A. L., “Nekotorye statisticheskie i veroyatnostnye zadachi na gruppakh”, Tr. MIAN, 111, 1970, 52–109 | Zbl

[15] Feldman G. M., “Kharakterizatsiya gaussovskogo raspredeleniya na gruppakh nezavisimostyu lineinykh statistik”, Sib. matem. zhurn., 31:2 (1990), 180–190 | MR

[16] Feldman G. M., “K teoreme Skitovicha–Darmua dlya konechnykh abelevykh grupp”, Teoriya veroyatn. i ee primen., 45:3 (2000), 603–607 | MR | Zbl

[17] Feldman G. M., Grachik P., “K teoreme Skitovicha–Darmua dlya diskretnykh abelevykh grupp”, Teoriya veroyatn. i ee primen., 49:3 (2004), 596–601 | MR | Zbl

[18] Khyuitt E., Ross K., Abstraktnyi garmonicheskii analiz, T. 1, Nauka, M., 1975, 656 pp.

[19] Feldman G. M., Arifmetika veroyatnostnykh raspredelenii i kharakterizatsionnye zadachi na abelevykh gruppakh, Naukova dumka, Kiev, 1990, 168 pp. | MR

[20] Linnik Yu. V., Ostrovskii I. V., Razlozheniya sluchainykh velichin i vektorov, Nauka, M., 1972, 480 pp. | MR