Homeostasis in chemical reaction pathways
Teoriâ veroâtnostej i ee primeneniâ, Tome 51 (2006) no. 4, pp. 793-801 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We consider stochastic models of chemical reaction networks with time-dependent input rates and several types of molecules. We prove that, in spite of strong time dependence of input rates, there is a kind of homeostasis phenomenon: far away from input nodes the mean numbers of molecules of each type become approximately constant (do not depend on time).
Keywords: stochastic models of biological systems, almost periodic input rates, stochastic networks, thermodynamic limit.
@article{TVP_2006_51_4_a9,
     author = {A. A. Zamyatin and V. A. Malyshev and A. D. Manita},
     title = {Homeostasis in chemical reaction pathways},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {793--801},
     year = {2006},
     volume = {51},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_2006_51_4_a9/}
}
TY  - JOUR
AU  - A. A. Zamyatin
AU  - V. A. Malyshev
AU  - A. D. Manita
TI  - Homeostasis in chemical reaction pathways
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 2006
SP  - 793
EP  - 801
VL  - 51
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/TVP_2006_51_4_a9/
LA  - ru
ID  - TVP_2006_51_4_a9
ER  - 
%0 Journal Article
%A A. A. Zamyatin
%A V. A. Malyshev
%A A. D. Manita
%T Homeostasis in chemical reaction pathways
%J Teoriâ veroâtnostej i ee primeneniâ
%D 2006
%P 793-801
%V 51
%N 4
%U http://geodesic.mathdoc.fr/item/TVP_2006_51_4_a9/
%G ru
%F TVP_2006_51_4_a9
A. A. Zamyatin; V. A. Malyshev; A. D. Manita. Homeostasis in chemical reaction pathways. Teoriâ veroâtnostej i ee primeneniâ, Tome 51 (2006) no. 4, pp. 793-801. http://geodesic.mathdoc.fr/item/TVP_2006_51_4_a9/

[1] Massey W. A., Whitt W., “Networks of infinite-server queues with nonstationary Poisson input”, Queueing Systems Theory Appl., 13:1–3 (1993), 183–250 | DOI | MR | Zbl

[2] Eick S. G., Massey W. A., Whitt W. $M_t/G/\infty$ queues with sinusoidal arrival rates, Manage. Sci., 39:2 (1993), 241–252 | DOI | Zbl

[3] Malyshev V. A., “Microscopic models for chemical thermodynamics”, J. Statist. Phys., 119:5–6 (2005), 997–1026 | DOI | MR | Zbl

[4] Malyshev V. A., “Fixed points for stochastic open chemical systems”, Markov Process. Related Fields, 11:2 (2005), 337–354 | MR | Zbl

[5] Gadgil C., Lee C.-H., Othmer H. G., “A stochastic analysis of first-order reaction networks”, Bull. Math. Biol., 67:5 (2005), 901–946 | DOI | MR

[6] Streater R. F., Statistical Dynamics, Imperial College Press, London, 1995, 275 pp. | MR | Zbl

[7] Thomas R., “Feedback loops: the wheels of regulatory networks”, Integrative Approaches to Molecular Biology, ed. J. Collado-Vides, B. Magasanik, and T. F. Smith, MIT Press, Cambridge, 1996, 167–178

[8] Mavrovouniotis M. L., “Analysis of complex metabolic pathways”, Integrative Approaches to Molecular Biology, ed. J. Collado-Vides, B. Magasanik, and T. F. Smith, MIT Press, Cambridge, 1996, 211–238

[9] Fell D., Understanding the Control of Metabolism, Portland Press, London, 1996, 300 pp.

[10] Levitan B. M., Pochti-periodicheskie funktsii, Gostekhizdat, M., 1953, 396 pp. | MR

[11] Rybko A., Shlosman S., “Poisson hypothesis for information networks. I, II”, Moscow Math. J., 5:3 (2005), 679–704 ; 4, 927–959 | MR | Zbl | MR | Zbl

[12] Rybko A., Shlosman S., Vladimirov A., Self-averaging property of queueing systems, http://www.arxiv.org/math.PR/0510046 | MR

[13] Rolski T., “Ergodic properties of Poisson processes with almost periodic intensity”, Probab. Theory Related Fields, 84:1 (1990), 27–37 | DOI | MR | Zbl