Precise estimates of the metric entropy for the set of arithmetic averages of quasi-stationary processes
Teoriâ veroâtnostej i ee primeneniâ, Tome 51 (2006) no. 4, pp. 785-793

Voir la notice de l'article provenant de la source Math-Net.Ru

Estimates of the $\varepsilon$-entropy of the set of arithmetic averages for an $R$-quasi-stationary system are obtained depending on the decay rate of the function $R(n)$. It is shown that the deduced estimates are the best in order as $\varepsilon\to+0$.
Keywords: stationary and quasi-stationary sequences, $R$-systems, arithmetic average, $\varepsilon$-entropy of the sets of arithmetic averages, upper and lower estimates.
@article{TVP_2006_51_4_a8,
     author = {V. F. Gaposhkin},
     title = {Precise estimates of the metric entropy for the set of arithmetic averages of quasi-stationary processes},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {785--793},
     publisher = {mathdoc},
     volume = {51},
     number = {4},
     year = {2006},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_2006_51_4_a8/}
}
TY  - JOUR
AU  - V. F. Gaposhkin
TI  - Precise estimates of the metric entropy for the set of arithmetic averages of quasi-stationary processes
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 2006
SP  - 785
EP  - 793
VL  - 51
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TVP_2006_51_4_a8/
LA  - ru
ID  - TVP_2006_51_4_a8
ER  - 
%0 Journal Article
%A V. F. Gaposhkin
%T Precise estimates of the metric entropy for the set of arithmetic averages of quasi-stationary processes
%J Teoriâ veroâtnostej i ee primeneniâ
%D 2006
%P 785-793
%V 51
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TVP_2006_51_4_a8/
%G ru
%F TVP_2006_51_4_a8
V. F. Gaposhkin. Precise estimates of the metric entropy for the set of arithmetic averages of quasi-stationary processes. Teoriâ veroâtnostej i ee primeneniâ, Tome 51 (2006) no. 4, pp. 785-793. http://geodesic.mathdoc.fr/item/TVP_2006_51_4_a8/