Precise estimates of the metric entropy for the set of arithmetic averages of quasi-stationary processes
Teoriâ veroâtnostej i ee primeneniâ, Tome 51 (2006) no. 4, pp. 785-793
Cet article a éte moissonné depuis la source Math-Net.Ru
Estimates of the $\varepsilon$-entropy of the set of arithmetic averages for an $R$-quasi-stationary system are obtained depending on the decay rate of the function $R(n)$. It is shown that the deduced estimates are the best in order as $\varepsilon\to+0$.
Keywords:
stationary and quasi-stationary sequences, $R$-systems, arithmetic average, $\varepsilon$-entropy of the sets of arithmetic averages, upper and lower estimates.
@article{TVP_2006_51_4_a8,
author = {V. F. Gaposhkin},
title = {Precise estimates of the metric entropy for the set of arithmetic averages of quasi-stationary processes},
journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
pages = {785--793},
year = {2006},
volume = {51},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TVP_2006_51_4_a8/}
}
TY - JOUR AU - V. F. Gaposhkin TI - Precise estimates of the metric entropy for the set of arithmetic averages of quasi-stationary processes JO - Teoriâ veroâtnostej i ee primeneniâ PY - 2006 SP - 785 EP - 793 VL - 51 IS - 4 UR - http://geodesic.mathdoc.fr/item/TVP_2006_51_4_a8/ LA - ru ID - TVP_2006_51_4_a8 ER -
V. F. Gaposhkin. Precise estimates of the metric entropy for the set of arithmetic averages of quasi-stationary processes. Teoriâ veroâtnostej i ee primeneniâ, Tome 51 (2006) no. 4, pp. 785-793. http://geodesic.mathdoc.fr/item/TVP_2006_51_4_a8/
[1] Talagrand M., “Applying a theorem of Fernique”, Ann. Inst. H. Poincaré, 32:6 (1996), 779–799 | MR | Zbl
[2] Weber M., Entropie métrique et convergence presque partout, Hermann, Paris, 1998, 151 pp. | MR | Zbl
[3] Gamet C., Weber M., “Entropy numbers of some ergodic averages”, Teoriya veroyatn. i ee primen., 44:4 (1999), 776–795 | MR | Zbl
[4] Gaposhkin V. F., “Otsenki entropii mnozhestva srednikh nekotorykh klassov statsionarnykh ili kvazistatsionarnykh posledovatelnostei”, Matem. zametki, 78:1 (2005), 52–58 | MR | Zbl