Mots-clés : Stein estimation
@article{TVP_2006_51_4_a7,
author = {E. S. Ahmed and A. K. Md. E. Saleh and A. I. Volodin and I. N. Volodin},
title = {Asymptotic expansion of the coverage probability of {James{\textendash}Stein} estimators},
journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
pages = {776--785},
year = {2006},
volume = {51},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TVP_2006_51_4_a7/}
}
TY - JOUR AU - E. S. Ahmed AU - A. K. Md. E. Saleh AU - A. I. Volodin AU - I. N. Volodin TI - Asymptotic expansion of the coverage probability of James–Stein estimators JO - Teoriâ veroâtnostej i ee primeneniâ PY - 2006 SP - 776 EP - 785 VL - 51 IS - 4 UR - http://geodesic.mathdoc.fr/item/TVP_2006_51_4_a7/ LA - ru ID - TVP_2006_51_4_a7 ER -
%0 Journal Article %A E. S. Ahmed %A A. K. Md. E. Saleh %A A. I. Volodin %A I. N. Volodin %T Asymptotic expansion of the coverage probability of James–Stein estimators %J Teoriâ veroâtnostej i ee primeneniâ %D 2006 %P 776-785 %V 51 %N 4 %U http://geodesic.mathdoc.fr/item/TVP_2006_51_4_a7/ %G ru %F TVP_2006_51_4_a7
E. S. Ahmed; A. K. Md. E. Saleh; A. I. Volodin; I. N. Volodin. Asymptotic expansion of the coverage probability of James–Stein estimators. Teoriâ veroâtnostej i ee primeneniâ, Tome 51 (2006) no. 4, pp. 776-785. http://geodesic.mathdoc.fr/item/TVP_2006_51_4_a7/
[1] Berger J., “A robust generalized Bayes estimator and confidence region for a multivariate normal mean”, Ann. Statist., 8:4 (1980), 716–761 | DOI | MR | Zbl
[2] Brown L. D., “On the admissibility of invariant estimators of one or more location parameters”, Ann. Math. Statist., 37 (1966), 1087–1136 | DOI | MR | Zbl
[3] de Bruijn N. G., Asymptotic Methods in Analysis, North-Holland, Amsterdam, 1958, 200 pp. | MR | Zbl
[4] Casella G., Hwang J. T., “Confidence sets and the Stein effect”, Comm. Statist. Theory Methods, 15:7 (1984), 2043–2063 | DOI | MR
[5] James W., Stein C., “Estimation with quadratic loss”, Proceedings of the Fourth Berkeley Symposium on Mathematical Statistics and Probability, 1961, 361–380 | MR
[6] Joshi V. M., “Inadmissibility of the usual confidence sets for the mean of a multivariate normal population”, Ann. Math. Statist., 38 (1967), 1868–1875 | DOI | MR | Zbl
[7] Hwang J. T., Casella G., “Minimax confidence sets for the mean of a multivariate normal distribution”, Ann. Statist., 10:3 (1982), 868–881 | DOI | MR | Zbl
[8] Hwang J. T., Casella G., “Improved set estimators for a multivariate normal mean. Recent results in estimation theory and related topics”, Statist. Decisions, suppl. 1 (1984), 3–16 | MR
[9] Robert C., Saleh A. K. Md. E., “Recentered confidence sets: a review”, Data Analysis from Statistical Foundations, Nova Sci. Publ., Huntington, 2001, 295–308 | MR
[10] Saleh A. K. Md. E., “Asymptotic properties of Stein-type confidence sets — a $U$-statistics approach”, Sankhyā, 65, part 2 (2003), 411–421 | MR
[11] Stein C., “Confidence sets for the mean of a multivariate normal distribution”, J. Roy. Statist. Soc., Ser. B, 24 (1962), 265–296 | MR | Zbl
[12] Lehmann E. L., Casella G., Theory of Point Estimation, 2-nd ed., Springer-Verlag, New York, 1998, 589 pp. | MR