Mots-clés : moments.
@article{TVP_2006_51_4_a4,
author = {P. Graczyk and L. Vostrikova},
title = {The moments of {Wishart} processes via {It\^o} calculus},
journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
pages = {732--751},
year = {2006},
volume = {51},
number = {4},
language = {en},
url = {http://geodesic.mathdoc.fr/item/TVP_2006_51_4_a4/}
}
P. Graczyk; L. Vostrikova. The moments of Wishart processes via Itô calculus. Teoriâ veroâtnostej i ee primeneniâ, Tome 51 (2006) no. 4, pp. 732-751. http://geodesic.mathdoc.fr/item/TVP_2006_51_4_a4/
[1] Bru M.-F., “Wishart processes”, J. Theoret. Probab., 4:4 (1991), 725–751 | DOI | MR | Zbl
[2] Demni N., Laguerre process and generalised Hartman–Watson law, Preprint, Laboratoire des Probabilités, Université Pierre Marie Curie, Paris, 2005 | MR
[3] Donati-Martin C., Large deviations for Wishart processes, Preprint, Laboratoire des Probabilités, Université Pierre Marie Curie, Paris, 2004 | MR
[4] Doumerc Y., Matsumoto H., Yor M., “Some properties of the Wishart processes and a matrix extension of the Hartman–Watson laws”, Publ. Res. Inst. Math. Sci., 40:4 (2004), 1385–1412 | DOI | MR | Zbl
[5] Gourieroux C., Jasiak J., Sufana R., A dynamical model for multivariate stochastic volatility: the Wishart autoregressive process, Preprint, 2004 ; http://www.crest.fr/pageperso/monfort/W.pdf | Zbl
[6] Gourieroux C., Safana R., Wishart quadratic term structure models, Les Cahiers du CREF of HEC Montréal Working Paper no 03-10, 2003
[7] Graczyk P., Letac G., Massam H., “The hyperoctahedral group, symmetric group representations and the moments of the real Wishart distribution”, J. Theoret. Probab., 18:1 (2005), 1–42 | DOI | MR | Zbl
[8] Herz C. S., “Bessel functions of matrix argument”, Ann. of Math., 61 (1955), 474–523 | DOI | MR | Zbl
[9] Zhakod Zh., Shiryaev A. N., Predelnye teoremy dlya sluchainykh protsessov, t. 1, 2, Fizmatlit, M., 1994, 544 pp. ; 368 с. | MR
[10] Krishnamoorthy K., Mathew T., “Comparison of approximation methods for computing tolerance factors for a multivariate normal population”, Technometrics, 41:3 (1999), 234–249 | DOI | MR | Zbl
[11] Letac G., Massam H., “All invariant moments of the Wishart distribution”, Scand. J. Statist., 31:2 (2004), 295–318 | DOI | MR | Zbl
[12] Lu I-L., Richards D. St. P., “MacMahon's master theorem, representation theory, and moments of Wishart distributions”, Adv. in Appl. Math., 27:2–3 (2001), 531–547 | MR | Zbl
[13] Muirhead R. J., Aspects of Multivariate Statistical Theory, Wiley, New York, 1982, 673 pp. | MR
[14] Protter P., Stochastic Integration and Differential Equations, Springer-Verlag, Berlin, 2004, 415 pp. | MR
[15] Revuz D., Yor M., Continuous Martingales and Brownian Motion, Springer-Verlag, Berlin, 1991, 533 pp. | MR | Zbl
[16] Simon B., Representations of Finite and Compact Groups, Grad. Stud. Math., 10, Amer. Math. Soc., Providence, RI, 1996, 266 pp. | MR
[17] Szegő G., Orthogonal Polynomials, AMS Colloq. Publ., 23, Amer. Math. Soc., Providence, RI, 1939, 401 pp. | MR | Zbl