Pattern correlation matrices for Markov sequences and tests of randomness
Teoriâ veroâtnostej i ee primeneniâ, Tome 51 (2006) no. 4, pp. 712-731

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper establishes some properties of the so-called pattern correlation matrices which are useful in statistical analysis of random Markov sequences. Asymptotic expansions for the probability of the occurrence of a given word a given number of times and of joint occurrences for two words are derived. These expansions give accurate approximations for the first two moments of the number of occurrences. The covariance matrix of the joint distribution of frequencies of all patterns is expressed in terms of the pattern correlation matrix, and a simple generalized inverse of this covariance matrix is given. Relevant statistical implications for goodness-of-fit testing are formulated.
Keywords: asymptotic expansions, resolvent, generating function, $\chi$-square, fundamental matrix.
Mots-clés : pseudo-inverse matrix
@article{TVP_2006_51_4_a3,
     author = {A. L. Rukhin},
     title = {Pattern correlation matrices for {Markov} sequences and tests of randomness},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {712--731},
     publisher = {mathdoc},
     volume = {51},
     number = {4},
     year = {2006},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_2006_51_4_a3/}
}
TY  - JOUR
AU  - A. L. Rukhin
TI  - Pattern correlation matrices for Markov sequences and tests of randomness
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 2006
SP  - 712
EP  - 731
VL  - 51
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TVP_2006_51_4_a3/
LA  - ru
ID  - TVP_2006_51_4_a3
ER  - 
%0 Journal Article
%A A. L. Rukhin
%T Pattern correlation matrices for Markov sequences and tests of randomness
%J Teoriâ veroâtnostej i ee primeneniâ
%D 2006
%P 712-731
%V 51
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TVP_2006_51_4_a3/
%G ru
%F TVP_2006_51_4_a3
A. L. Rukhin. Pattern correlation matrices for Markov sequences and tests of randomness. Teoriâ veroâtnostej i ee primeneniâ, Tome 51 (2006) no. 4, pp. 712-731. http://geodesic.mathdoc.fr/item/TVP_2006_51_4_a3/