Asymptotic properties of multidimensional stable densities and asymmetric problems of large deviations
    
    
  
  
  
      
      
      
        
Teoriâ veroâtnostej i ee primeneniâ, Tome 51 (2006) no. 4, pp. 691-711
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			The paper considers asymptotic properties of the so-called asymmetric multidimensional stable distributions with the property that the minimal convex conus generated by a support of Poisson spectral measure does not coincide with $\mathbf R^d$. The density of such a distribution along some directions can decrease extremely quickly. Using methods of the conjugate Cramér distributions we find the exact asymptotic and write an asymptotic series which describes a character of the decrease.
			
            
            
            
          
        
      @article{TVP_2006_51_4_a2,
     author = {A. V. Nagaev},
     title = {Asymptotic properties of multidimensional stable densities and asymmetric problems of large deviations},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {691--711},
     publisher = {mathdoc},
     volume = {51},
     number = {4},
     year = {2006},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_2006_51_4_a2/}
}
                      
                      
                    TY - JOUR AU - A. V. Nagaev TI - Asymptotic properties of multidimensional stable densities and asymmetric problems of large deviations JO - Teoriâ veroâtnostej i ee primeneniâ PY - 2006 SP - 691 EP - 711 VL - 51 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TVP_2006_51_4_a2/ LA - ru ID - TVP_2006_51_4_a2 ER -
A. V. Nagaev. Asymptotic properties of multidimensional stable densities and asymmetric problems of large deviations. Teoriâ veroâtnostej i ee primeneniâ, Tome 51 (2006) no. 4, pp. 691-711. http://geodesic.mathdoc.fr/item/TVP_2006_51_4_a2/
