A nonclassical Chung-type law of the iterated logarithm for i.i.d. random variables
Teoriâ veroâtnostej i ee primeneniâ, Tome 51 (2006) no. 4, pp. 816-821 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Letting $\{X,X_n;\,n\ge 1\}$ be a sequence of independent identically distributed random variables and set $S_n=\sum_{i=1}^n X_i$, we then define a sequence of positive constants $\{d(n),\ n\ge 1\}$ which is not asymptotically equivalent to $\log\log n$ but is such that $\liminf_{n\to\infty}\max_{1\le i\le n}|S_i|/\sqrt{n/d(n)}=\pi/\sqrt{8}$ almost surely, which is equivalent to $\mathbf E X=0$ and $\mathbf E X^2=1$.
Keywords: Chung-type law of the iterated logarithm, small deviation theorem.
@article{TVP_2006_51_4_a12,
     author = {T.-X. Pang and Z.-Y. Lin},
     title = {A~nonclassical {Chung-type} law of the iterated logarithm for i.i.d. random variables},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {816--821},
     year = {2006},
     volume = {51},
     number = {4},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TVP_2006_51_4_a12/}
}
TY  - JOUR
AU  - T.-X. Pang
AU  - Z.-Y. Lin
TI  - A nonclassical Chung-type law of the iterated logarithm for i.i.d. random variables
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 2006
SP  - 816
EP  - 821
VL  - 51
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/TVP_2006_51_4_a12/
LA  - en
ID  - TVP_2006_51_4_a12
ER  - 
%0 Journal Article
%A T.-X. Pang
%A Z.-Y. Lin
%T A nonclassical Chung-type law of the iterated logarithm for i.i.d. random variables
%J Teoriâ veroâtnostej i ee primeneniâ
%D 2006
%P 816-821
%V 51
%N 4
%U http://geodesic.mathdoc.fr/item/TVP_2006_51_4_a12/
%G en
%F TVP_2006_51_4_a12
T.-X. Pang; Z.-Y. Lin. A nonclassical Chung-type law of the iterated logarithm for i.i.d. random variables. Teoriâ veroâtnostej i ee primeneniâ, Tome 51 (2006) no. 4, pp. 816-821. http://geodesic.mathdoc.fr/item/TVP_2006_51_4_a12/

[1] Csáki E., “On the lower limits of maxima and minima of Wiener process and partial sums”, Z. Wahrscheinlichkeitstheor. Verw. Geb., 43:3 (1978), 205–221 | DOI | MR | Zbl

[2] Chung K. L., “On the maximum partial sums of sequences of independent random variables”, Trans. Amer. Math. Soc., 64 (1948), 205–233 | DOI | MR | Zbl

[3] Jain N. C., Pruitt W. E., “The other law of the iterated logarithm”, Ann. Probab., 3:6 (1975), 1046–1049 | DOI | MR | Zbl

[4] Klesov O., Rosalsky A., “A nonclassical law of the iterated logarithm for i.i.d. square integrable random variables”, Stochastic Anal. Appl., 19:4 (2001), 627–641 | DOI | MR | Zbl

[5] Klesov O., Rosalsky A., “A nonclassical law of the iterated logarithm for i.i.d. square integrable random variables. II”, Stochastic Anal. Appl., 20:4 (2002), 839–846 | DOI | MR | Zbl

[6] Hartman P., Wintner A., “On the law of the iterated logarithm”, Amer. J. Math., 63 (1941), 169–176 | DOI | MR

[7] Shao Q. M., “How small are the increments of partial sums of non-i.i.d. random variables”, Sci. China, 35:6 (1992), 675–689 | MR | Zbl

[8] Shao Q. M., “A small deviation theorem for independent random variables”, Teoriya veroyatn. i ee primen., 40:1 (1995), 225–235 | MR | Zbl

[9] Lin Z., “A self-normalized Chung type law of the iterated logarithm”, Teoriya veroyatn. i ee primen., 41:4 (1996), 934–942 | MR | Zbl