@article{TVP_2006_51_4_a12,
author = {T.-X. Pang and Z.-Y. Lin},
title = {A~nonclassical {Chung-type} law of the iterated logarithm for i.i.d. random variables},
journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
pages = {816--821},
year = {2006},
volume = {51},
number = {4},
language = {en},
url = {http://geodesic.mathdoc.fr/item/TVP_2006_51_4_a12/}
}
TY - JOUR AU - T.-X. Pang AU - Z.-Y. Lin TI - A nonclassical Chung-type law of the iterated logarithm for i.i.d. random variables JO - Teoriâ veroâtnostej i ee primeneniâ PY - 2006 SP - 816 EP - 821 VL - 51 IS - 4 UR - http://geodesic.mathdoc.fr/item/TVP_2006_51_4_a12/ LA - en ID - TVP_2006_51_4_a12 ER -
T.-X. Pang; Z.-Y. Lin. A nonclassical Chung-type law of the iterated logarithm for i.i.d. random variables. Teoriâ veroâtnostej i ee primeneniâ, Tome 51 (2006) no. 4, pp. 816-821. http://geodesic.mathdoc.fr/item/TVP_2006_51_4_a12/
[1] Csáki E., “On the lower limits of maxima and minima of Wiener process and partial sums”, Z. Wahrscheinlichkeitstheor. Verw. Geb., 43:3 (1978), 205–221 | DOI | MR | Zbl
[2] Chung K. L., “On the maximum partial sums of sequences of independent random variables”, Trans. Amer. Math. Soc., 64 (1948), 205–233 | DOI | MR | Zbl
[3] Jain N. C., Pruitt W. E., “The other law of the iterated logarithm”, Ann. Probab., 3:6 (1975), 1046–1049 | DOI | MR | Zbl
[4] Klesov O., Rosalsky A., “A nonclassical law of the iterated logarithm for i.i.d. square integrable random variables”, Stochastic Anal. Appl., 19:4 (2001), 627–641 | DOI | MR | Zbl
[5] Klesov O., Rosalsky A., “A nonclassical law of the iterated logarithm for i.i.d. square integrable random variables. II”, Stochastic Anal. Appl., 20:4 (2002), 839–846 | DOI | MR | Zbl
[6] Hartman P., Wintner A., “On the law of the iterated logarithm”, Amer. J. Math., 63 (1941), 169–176 | DOI | MR
[7] Shao Q. M., “How small are the increments of partial sums of non-i.i.d. random variables”, Sci. China, 35:6 (1992), 675–689 | MR | Zbl
[8] Shao Q. M., “A small deviation theorem for independent random variables”, Teoriya veroyatn. i ee primen., 40:1 (1995), 225–235 | MR | Zbl
[9] Lin Z., “A self-normalized Chung type law of the iterated logarithm”, Teoriya veroyatn. i ee primen., 41:4 (1996), 934–942 | MR | Zbl