On the distribution of the number of final particles in a branching process with transformations and pairwise interactions
Teoriâ veroâtnostej i ee primeneniâ, Tome 51 (2006) no. 4, pp. 801-809 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A Markov continuous time branching process with two types of particles $T_1$ and $T_2$ is considered. Particles of the two types appear either as the offspring of a particle of type $T_1$, or as a result of interaction of two particles of type $T_1$. Under certain restrictions on the distribution of the number of new particles the asymptotic behavior of the expectation and variance of the number of particles of the two types are investigated and the asymptotic normality of the distribution of the number of final particles of type $T_2$ is established when the initial number of particles of type $T_1$ is large.
Keywords: branching process with interaction, final probabilities, exponential generating function, stationary first Kolmogorov equation
Mots-clés : explicit solutions.
@article{TVP_2006_51_4_a10,
     author = {A. M. Lange},
     title = {On the distribution of the number of final particles in a~branching process with transformations and pairwise interactions},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {801--809},
     year = {2006},
     volume = {51},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_2006_51_4_a10/}
}
TY  - JOUR
AU  - A. M. Lange
TI  - On the distribution of the number of final particles in a branching process with transformations and pairwise interactions
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 2006
SP  - 801
EP  - 809
VL  - 51
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/TVP_2006_51_4_a10/
LA  - ru
ID  - TVP_2006_51_4_a10
ER  - 
%0 Journal Article
%A A. M. Lange
%T On the distribution of the number of final particles in a branching process with transformations and pairwise interactions
%J Teoriâ veroâtnostej i ee primeneniâ
%D 2006
%P 801-809
%V 51
%N 4
%U http://geodesic.mathdoc.fr/item/TVP_2006_51_4_a10/
%G ru
%F TVP_2006_51_4_a10
A. M. Lange. On the distribution of the number of final particles in a branching process with transformations and pairwise interactions. Teoriâ veroâtnostej i ee primeneniâ, Tome 51 (2006) no. 4, pp. 801-809. http://geodesic.mathdoc.fr/item/TVP_2006_51_4_a10/

[1] Barucha-Rid A. T., Elementy teorii markovskikh protsessov i ikh prilozheniya, Nauka, M., 1969, 512 pp. | MR

[2] Van Kampen N. G., Stokhasticheskie protsessy v fizike i khimii, Vysshaya shkola, M., 1990, 376 pp. | Zbl

[3] Gnedenko B. V., Kurs teorii veroyatnostei, URSS, M., 2001, 318 pp.

[4] Sevastyanov B. A., Vetvyaschiesya protsessy, Nauka, M., 1971, 436 pp. | MR

[5] Sevastyanov B. A., Kalinkin A. V., “Vetvyaschiesya sluchainye protsessy s vzaimodeistviem chastits”, Dokl. AN SSSR, 264:2 (1982), 306–308 | MR | Zbl

[6] Kalinkin A. V., “Finalnye veroyatnosti dlya vetvyaschegosya sluchainogo protsessa s vzaimodeistviem chastits”, Dokl. AN SSSR, 269:6 (1983), 1309–1312 | MR | Zbl

[7] Kalinkin A. V., “O veroyatnosti vyrozhdeniya vetvyaschegosya protsessa s dvumya kompleksami vzaimodeistviya chastits”, Teoriya veroyatn. i ee primen., 46:2 (2001), 376–380 | MR | Zbl

[8] Uitteker E. T., Vatson Dzh. N., Kurs sovremennogo analiza. Ch. 2: Transtsendentnye funktsii, Fizmatlit, M., 1963, 516 pp.

[9] Beitmen G., Erdeii A., Vysshie transtsendentnye funktsii. Gipergeometricheskaya funktsiya. Funktsiya Lezhandra, Nauka, M., 1973, 294 pp.

[10] Kamke E., Spravochnik po obyknovennym differentsialnym uravneniyam, Nauka, M., 1971, 576 pp. | MR

[11] Lange A. M., “Statsionarnoe raspredelenie v otkrytoi stokhasticheskoi sisteme s parnym vzaimodeistviem chastits”, Vestn. MGTU im. N. E. Baumana, cer. estestv. nauki, 2005, no. 1(16), 3–22

[12] Lange A. M., “Asimptoticheskie svoistva finalnykh veroyatnostei odnogo vetvyaschegosya protsessa s vzaimodeistviem chastits”, Obozr. prikl. i promyshl. matem., 12:3 (2005), 669–770