An exponential estimate for a wavelet density estimator
Teoriâ veroâtnostej i ee primeneniâ, Tome 51 (2006) no. 4, pp. 674-690 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

This article is dedicated to deriving an exponential inequality for the distribution of the $L^p$-norm of the discrepancy between a one-dimensional probability density and its wavelet estimator that uses thresholding. In the underlying multiresolution analysis, the scale function and the mother wavelet are supposed to have compact support. The exponential estimate obtained is akin to Bernstein's inequality for sums of independent random variables. It supplements the known bounds for the mean integrated risks. The proof exploits the near-independence of empirical approximations to the coefficients of the same multiresolution level that correspond to wavelets with well-separated supports.
@article{TVP_2006_51_4_a1,
     author = {J. Gama and V. V. Yurinskii},
     title = {An exponential estimate for a~wavelet density estimator},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {674--690},
     year = {2006},
     volume = {51},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_2006_51_4_a1/}
}
TY  - JOUR
AU  - J. Gama
AU  - V. V. Yurinskii
TI  - An exponential estimate for a wavelet density estimator
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 2006
SP  - 674
EP  - 690
VL  - 51
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/TVP_2006_51_4_a1/
LA  - ru
ID  - TVP_2006_51_4_a1
ER  - 
%0 Journal Article
%A J. Gama
%A V. V. Yurinskii
%T An exponential estimate for a wavelet density estimator
%J Teoriâ veroâtnostej i ee primeneniâ
%D 2006
%P 674-690
%V 51
%N 4
%U http://geodesic.mathdoc.fr/item/TVP_2006_51_4_a1/
%G ru
%F TVP_2006_51_4_a1
J. Gama; V. V. Yurinskii. An exponential estimate for a wavelet density estimator. Teoriâ veroâtnostej i ee primeneniâ, Tome 51 (2006) no. 4, pp. 674-690. http://geodesic.mathdoc.fr/item/TVP_2006_51_4_a1/

[1] Bernshtein S. N., Teoriya veroyatnostei, Gostekhizdat, M.–L., 1946, 556 pp.; Бернштейн С. Н., “Об одном видоизменении неравенства Чебышёва и о погрешности формулы Лапласа”, Собр. соч., т. 4, Наука, М., 1964, 71–79 | MR

[2] Devroi L., Dërfi L., Neparametricheskoe otsenivanie plotnosti. $L_1$-podkhod, Mir, M., 1988, 407 pp. | MR

[3] Kerstan I., Mattes K., Mekke I., Bezgranichno delimye tochechnye protsessy, Nauka, M., 1982, 391 pp. | MR | Zbl

[4] Nadaraya E. A., “Predelnoe raspredelenie kvadraticheskogo ukloneniya neparametricheskikh otsenok funktsii regressii”, Soobsch. AN GSSR, 74:1 (1974), 33–36 | MR

[5] Novikov I. Ya., Stechkin S. B., “Osnovy teorii vspleskov”, Uspekhi matem. nauk, 53:6(324) (1998), 53–128 | MR | Zbl

[6] Chentsov N. N., “Otsenka neizvestnoi plotnosti raspredeleniya po nablyudeniyam”, Dokl. AN SSSR, 147:1 (1962), 45–48 | MR | Zbl

[7] Daubechies I., Ten Lectures on Wavelets, SIAM, Philadelphia, 1992, 357 pp. | MR

[8] Donoho D. L., Johnstone I. M., Kerkyacharian G., Picard D., “Density estimation by wavelet thresholding”, Ann. Statist., 24:2 (1996), 508–539 | DOI | MR | Zbl

[9] Fan J., Hall P., Martin M., Patil P., “Adaptation to high spatial inhomogeneity using wavelet methods”, Statist. Sinica, 9:1 (1999), 85–102 | MR | Zbl

[10] Fortet R., Mourier E., “Les fonctions aléatoires comme éléments aléatoires dans les espaces de Banach”, Studia Math., 15:1 (1955), 62–79 | MR | Zbl

[11] Hall P., McKay I., Turlach B. A., “Performance of wavelet methods for functions with many discontinuities”, Ann. Statist., 24:6 (1996), 2462–2476 | DOI | MR | Zbl

[12] Härdle W., Kerkyacharian G., Picard D., Tsybakov A., Wavelets, Approximation, and Statistical Applications, Lecture Notes in Statist., 129, Springer-Verlag, New York, 1998, 265 pp. | MR | Zbl

[13] Karr A. F., Point Processes and Their Statistical Inference, Probab. Pure Appl., 2, Dekker, New York, 1986, 490 pp. | MR | Zbl

[14] Meyer Y., Ondelettes et Opérateurs, v. I–III, Hermann, Paris, 1990–1991, 538 pp. | MR

[15] Rosenblatt M., “A quadratic measure of deviation of two-dimensional density estimates and a test of independence”, Ann. Statist., 3:1 (1975), 1–14 | DOI | MR | Zbl

[16] Yurinsky V., Sums and Gaussian Vectors, Lecture Notes in Math., 1617, Springer-Verlag, Berlin, 1995, 305 pp. | MR | Zbl