Analysis of hidden Markov models states generated by special jump processes
Teoriâ veroâtnostej i ee primeneniâ, Tome 51 (2006) no. 3, pp. 589-600 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

This paper investigates a class of stochastic differential systems with random structure, the transitions of which are generated by the special Markov jump processes. A statement concerning the Markovian property of the couple “jump process–governed diffusion” is presented. An analogue of the Fokker–Plank–Kolmogorov equation in the form of a system of partial integrodifferential equations, describing the evolution of the mutual transition probability of this couple, is derived.
Keywords: Markov jump process, transition probability, hidden Markov model, Fokker–Plank–Kolmogorov equation.
@article{TVP_2006_51_3_a8,
     author = {A. V. Borisov},
     title = {Analysis of hidden {Markov} models states generated by special jump processes},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {589--600},
     year = {2006},
     volume = {51},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_2006_51_3_a8/}
}
TY  - JOUR
AU  - A. V. Borisov
TI  - Analysis of hidden Markov models states generated by special jump processes
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 2006
SP  - 589
EP  - 600
VL  - 51
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TVP_2006_51_3_a8/
LA  - ru
ID  - TVP_2006_51_3_a8
ER  - 
%0 Journal Article
%A A. V. Borisov
%T Analysis of hidden Markov models states generated by special jump processes
%J Teoriâ veroâtnostej i ee primeneniâ
%D 2006
%P 589-600
%V 51
%N 3
%U http://geodesic.mathdoc.fr/item/TVP_2006_51_3_a8/
%G ru
%F TVP_2006_51_3_a8
A. V. Borisov. Analysis of hidden Markov models states generated by special jump processes. Teoriâ veroâtnostej i ee primeneniâ, Tome 51 (2006) no. 3, pp. 589-600. http://geodesic.mathdoc.fr/item/TVP_2006_51_3_a8/

[1] Gikhman I. I., Skorokhod A. V., Teoriya sluchainykh protsessov, T. 2, 3, Nauka, M., 1973, 639 pp. ; 496 с. | MR

[2] Dynkin E. B., Markovskie protsessy, Fizmatgiz, M., 1963, 859 pp. | MR

[3] Vatanabe C., Ikeda N., Stokhasticheskie differentsialnye uravneniya i diffuzionnye protsessy, Nauka, M., 1986, 445 pp. | MR

[4] Boel R., Varaiya P., Wong E., “Martingales on jump processes. I: Representation results”, SIAM J. Control Optim., 13:5 (1975), 999–1021 | DOI | MR | Zbl

[5] Liptser R. Sh., Shiryayev A. N., Statistics of Random Processes. II, Springer-Verlag, New York–Heidelberg, 1978, 339 pp. | MR

[6] Wan C. B., Davis M. H. A., “Existence of optimal controls for stochastic jump processes”, SIAM J. Control Optim., 14:4 (1979), 511–524 | DOI | MR

[7] Liptser R. Sh., Shiryaev A. N., Teoriya martingalov, Nauka, M., 1986, 512 pp. | MR | Zbl

[8] Davis M. H. A., Markov Models and Optimization, Chapman Hall, London, 1993, 295 pp. | MR | Zbl

[9] Stratonovich R. L., Uslovnye markovskie protsessy i ikh primenenie k teorii optimalnogo upravleniya, Izd-vo Mosk. un-ta, M., 1966 | MR

[10] Elliott R. J., Aggoun L., Moore J. B., Hidden Markov Models. Estimation and Control, Springer-Verlag, New York, 1995, 361 pp. | MR

[11] Mariton M., Jump Linear Systems in Automatic Control, Marcel Decker, New York, 1990

[12] Björk T., “Finite optimal filters for a class of nonlinear diffusions with jumping parameters”, Stochastics, 2:2 (1981/82), 121–138 | MR

[13] Miller B. M., Runggaldier W. J., “Kalman filtering for linear systems with coefficients driven by a hidden Markov jump process”, Systems Control Lett., 31:2 (1997), 93–102 | DOI | MR | Zbl

[14] Cvitanič J., Liptser R. Sh., Rozovskii B., “Tracking volatility”, Proceedings of the 39th IEEE Conference on Decision and Control (Sydney, 2000), 1189–1193

[15] Zhou X. Y., Yin G., “Markowitz's mean-variance portfolio selection with regime switching: a continuous-time model”, SIAM J. Control Optim., 42:4 (2003), 1466–1482 | DOI | MR | Zbl

[16] Genon-Catalot V., Jeantheau T., Larédo C., “Stochastic volatility models as hidden Markov models and statistical applications”, Bernoulli, 6:6 (2000), 1051–1079 | DOI | MR | Zbl

[17] Elliott R. J., Malcolm W. P., Tsoi A., “Hidden Markov volatility estimation”, Proceedings of the 41st IEEE Conference on Decision and Control, v. 1 (Las Vegas, 2002), 398–404

[18] Anisimov V., “Switching processes: averaging principle, diffusion approximation and applications”, Acta Appl. Math., 40:2 (1995), 95–141 | DOI | MR | Zbl

[19] Miller B. M., Avrachenkov K. E., Stepanyan K. V., Miller G. B., “Zadacha optimalnogo stokhasticheskogo upravleniya potokom dannykh po nepolnoi informatsii”, Problemy peredachi informatsii, 41:2 (2005), 89–110 | MR | Zbl

[20] Bar-Shalom Y., Li X. R., Kirubarajan T., Estimation with Applications to Tracking and Navigation: Theory, Algorithms, and Software, Wiley, New York, 2001

[21] Borisov A. V., “Analiz i otsenivanie sostoyanii spetsialnykh markovskikh skachkoobraznykh protsessov, I: martingalnoe predstavlenie”, Avtomatika i telemekhanika, 2004, no. 1, 50–65 | Zbl

[22] Portenko N. I., Skorokhod A. V., Shurenkov V. M., “Markovskie protsessy”, Itogi nauki i tekhniki, ser. sovrem. probl. matem., fundam. napr., 46, VINITI, M., 1989, 5–245 | MR

[23] Elliott R., Stokhasticheskii analiz i ego prilozheniya, Mir, M., 1986, 351 pp. | MR | Zbl

[24] Anulova S. V., Veretennikov A. Yu., Krylov N. V., Liptser R. Sh., Shiryaev A. N., “Stokhasticheskoe ischislenie”, Itogi nauki i tekhniki, ser. sovrem. probl. matem., fundam. napr., 45, VINITI, M., 1989, 5–253 | MR

[25] Fridman A., Uravneniya s chastnymi proizvodnymi parabolicheskogo tipa, Mir, M., 1968, 427 pp.