Mots-clés : propagation of chaos
@article{TVP_2006_51_3_a6,
author = {P. Del Moral and A. Doucet and G. W. Peters},
title = {Sharp propagation of chaos estimates for {Feynmann{\textendash}Kac} particle models},
journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
pages = {552--582},
year = {2006},
volume = {51},
number = {3},
language = {en},
url = {http://geodesic.mathdoc.fr/item/TVP_2006_51_3_a6/}
}
TY - JOUR AU - P. Del Moral AU - A. Doucet AU - G. W. Peters TI - Sharp propagation of chaos estimates for Feynmann–Kac particle models JO - Teoriâ veroâtnostej i ee primeneniâ PY - 2006 SP - 552 EP - 582 VL - 51 IS - 3 UR - http://geodesic.mathdoc.fr/item/TVP_2006_51_3_a6/ LA - en ID - TVP_2006_51_3_a6 ER -
P. Del Moral; A. Doucet; G. W. Peters. Sharp propagation of chaos estimates for Feynmann–Kac particle models. Teoriâ veroâtnostej i ee primeneniâ, Tome 51 (2006) no. 3, pp. 552-582. http://geodesic.mathdoc.fr/item/TVP_2006_51_3_a6/
[1] Ben Arous G., Zeitouni O. I., “Increasing propagation of chaos for mean field models”, Ann. Inst. H. Poincaré Probab. Statist., 35 (1999), 85–102 | DOI | MR | Zbl
[2] Del Moral P., Feynman–Kac Formulae: Genealogical and Interacting Particle Systems with Applications, Springer-Verlag, New York, 2004, 555 pp. | MR
[3] Del Moral P., Doucet A., “On a Class of Genealogical and Interacting Metropolis Models”, Séminaire de Probabilités 37, Lecture Notes in Math., 1832, eds. J. Azéma, M. Emery, M. Ledoux, and M. Yor, 2003, 415–446 | Zbl
[4] Del Moral P., Doucet A., Peters G. W., Sequential Monte Carlo Samplers, Technical Report, CUED/F-INFENG/TR 443, Dec., Cambridge University, Cambridge, 2002
[5] Del Moral P., Miclo L., “Genealogies and Increasing Propagations of Chaos for Feynman–Kac and Genetic Models”, Ann. Appl. Probab., 11:4 (2001), 1166–1198 | MR | Zbl
[6] Del Moral P., Miclo L., On the Strong Propagation of Chaos for Interacting Particle Approximations of Feynman–Kac Formulae, Publications du Laboratoire de Statistique et Probabilités, no 08-00, Université Paul Sabatier, France, 2000
[7] Doucet A., de Freitas N., Gordon N. (ed.), Sequential Monte Carlo Methods in Pratice, Statistics for Engineering and Information Science, Springer, New York, 2001, 580 pp. | MR
[8] Graham C., Méléard C., “Stochastic Particle Approximations for Generalized Boltzmann Models and Convergence Estimates”, Ann. Probab., 25:1 (1997), 115–132 | DOI | MR | Zbl
[9] Hoeffding W., “A class of statistics with asymptotically normal distribution”, Ann. Math. Statist., 19 (1948), 293–325 | DOI | MR | Zbl
[10] Hoeffding W., The strong law of large numbers for $U$-statistics, Report, no 302, Inst. Statist. Univ. of North Carolina, 1961
[11] Méléard S., Asymptotic Behaviour of Some Interacting Particle Systems: McKean–Vlasov and Boltzmann Models, Lecture Notes in Math., 1627, 1996 | MR