Nash equilibrium in a game of calibration
Teoriâ veroâtnostej i ee primeneniâ, Tome 51 (2006) no. 3, pp. 537-551 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A general game between market and investor is studied and properties which are based on the notion of Nash equilibrium are derived. The results have the potential to unify and simplify previous research. As an illustration, a problem of calibration in a simple model of stock price development is treated.
Keywords: Nash equilibrium, model calibration, relative entropy, reverse relative entropy.
@article{TVP_2006_51_3_a5,
     author = {O. A. Glonti and P. Harrem\"oes and Z. Khechinashvili and F. Tops{\o}e},
     title = {Nash equilibrium in a game of calibration},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {537--551},
     year = {2006},
     volume = {51},
     number = {3},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TVP_2006_51_3_a5/}
}
TY  - JOUR
AU  - O. A. Glonti
AU  - P. Harremöes
AU  - Z. Khechinashvili
AU  - F. Topsøe
TI  - Nash equilibrium in a game of calibration
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 2006
SP  - 537
EP  - 551
VL  - 51
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TVP_2006_51_3_a5/
LA  - en
ID  - TVP_2006_51_3_a5
ER  - 
%0 Journal Article
%A O. A. Glonti
%A P. Harremöes
%A Z. Khechinashvili
%A F. Topsøe
%T Nash equilibrium in a game of calibration
%J Teoriâ veroâtnostej i ee primeneniâ
%D 2006
%P 537-551
%V 51
%N 3
%U http://geodesic.mathdoc.fr/item/TVP_2006_51_3_a5/
%G en
%F TVP_2006_51_3_a5
O. A. Glonti; P. Harremöes; Z. Khechinashvili; F. Topsøe. Nash equilibrium in a game of calibration. Teoriâ veroâtnostej i ee primeneniâ, Tome 51 (2006) no. 3, pp. 537-551. http://geodesic.mathdoc.fr/item/TVP_2006_51_3_a5/

[1] Bellini F., Frittelli M., “On the existence of minimax martingale measures”, Math. Finance, 12:1 (2002), 1–21 | DOI | MR | Zbl

[2] Chentsov N. N., “Nesimmetrichnoe rasstoyanie mezhdu raspredeleniyami veroyatnostei, entropiya i teoriya Pifagora”, Matem. zametki, 4:3 (1968), 323–332 | Zbl

[3] Maslov V. P., Chernyi A. S., “O minimizatsii i maksimizatsii entropii v razlichnykh distsiplinakh”, Teoriya veroyatn. i ee primen., 48:3 (2003), 466–486 | MR | Zbl

[4] Csiszár I., “I-divergence geometry of probability distributions and minimization problems”, Ann. Probab., 3 (1975), 146–158 | DOI | MR | Zbl

[5] Csiszár I., Matús F., “Information projections revisited”, IEEE Trans. Inform. Theory, 49:6 (2003), 1474–1490 | DOI | MR | Zbl

[6] Delbaen F., Grandits P., Rheinlaender T., Samperi D., Schweizer M., Stricker C., “Exponential hedging and entropic penalties”, Math. Finance, 12:2 (2002), 99–123 | DOI | MR | Zbl

[7] Glonti O., Jamburia L., Kapanadze N., Khechinashvili Z., “The minimal entropy and minimal $\phi$-divergence distance martingale measures for the trinomial scheme”, Appl. Math. Inform., 7:2 (2002), 28–40 | MR | Zbl

[8] Glonti O., Jamburia L., Khechinashvili Z., “Trinomial scheme with “disorder”. The minimal entropy martingale measure”, Appl. Math. Inform. and Mech., 9:2 (2004), 14–29

[9] Goll T., Rüschendorf L., “Minimax and minimal distance martingale measures and their relationship to portfolio optimization”, Finance Stoch., 5:4 (2001), 557–581 | DOI | MR | Zbl

[10] Grandits P., Rheinländer T., “On the minimal entropy martingale measure”, Ann. Probab., 30:3 (2002), 1003–1038 | DOI | MR | Zbl

[11] Grünwald P. D., Dawid A. P., “Game theory, maximum entropy, minimum discrepancy, and robust Bayesian decision theory”, Ann. Stat., 32:4 (2004), 1367–1433 | DOI | MR | Zbl

[12] Harremoës P., “The Information Topology”, Proceedings of the IEEE International Symposium on Information Theory, 2002, 431

[13] Harremoës P., “Information Topologies with Applications”, Entropy, Search, Complexity, J. Bolyai Soc. Math. Stud., 16, eds. I. Csiszár, G. O. H. Katona, G. Tardos, Springer-Verlag, Berlin, 2006, 113–150 | MR

[14] Harremoës P., Topsøe F., “Maximum entropy fundamentals”, Entropy, 3 (2001), 191–226 ; http://www.unibas.ch/mdpi/entropy | DOI | MR | Zbl

[15] Kabanov Y. M., Stricker C., “On the optimal portfolio for the exponential utility maximization: Remarks to the six-author paper”, Math. Finance, 12:2 (2002), 125–134 | DOI | MR | Zbl

[16] Kapur J. N., Maximum Entropy Models in Science and Engineering, Wiley, New York, 1993, 635 pp. | MR

[17] Rüschendorf L., “On the minimum information discrimination theorem”, Statist. Decisions, 1, suppl. (1984), 263–283 | MR | Zbl

[18] Samperi D., Inverse problems, model selection and entropy in derivative security pricing, Ph.D. Thesis, New York University, New York, 1998

[19] Samperi D., Model Calibration using Entropy and Geometry. Samperi Research and Courant Institute, Preprint, 2000

[20] Samperi D., Model selection using entropy and geometry: Complements to the six-author paper, SSRN: , 2005 http://ssrn.com/abstract=870072

[21] Topsøe F., “Information Theoretical Optimization Techniques”, Kybernetika, 15 (1979), 8–27 | MR | Zbl

[22] Topsøe F., “Game Theoretical Equilibrium, Maximum Entropy and Minimum Information Discrimination”, Maximum Entropy and Bayesian Methods, Fund. Theories Phys., 53, eds. A. Mohammad-Djafari, G. Demoments, Kluwer Academic Publishers, Dordrecht, 1993, 15–23 | MR | Zbl

[23] Topsøe F., “Maximum entropy versus minimum risk and applications to some classical discrete distributions”, IEEE Trans. Inform. Theory, 48 (2002), 2368–2376 | DOI | MR | Zbl

[24] Topsøe F., “Information Theory at the Service of Science”, Entropy, Search, Complexity, J. Bolyai Soc. Math. Stud., 16, eds. I. Csiszár, G. O. H. Katona, G. Tardos, Springer-Verlag, Berlin, 2006, 179–207 | MR