A formula of total probability with interference term and the Hilbert space representation of the contextual Kolmogorov model
Teoriâ veroâtnostej i ee primeneniâ, Tome 51 (2006) no. 3, pp. 518-536 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We compare the classical Kolmogorov and quantum probability models. We show that the gap between these models is not so huge as was commonly believed. The main structures of quantum theory (interference of probabilities, Born's rule, complex probabilistic amplitudes, Hilbert state space, representation of observables by operators) are present in a latent form in the Kolmogorov model. In particular, we obtain “interference of probabilities” without appealing to the Hilbert space formalism. We interpret “interference of probabilities” as a perturbation (by a cos-term) of the conventional formula of total probability. Our classical derivation of quantum probabilistic formalism can stimulate applications of quantum methods outside of the microworld, for instance, in psychology, biology, economy, and other domains of science.
Keywords: formula of total probability, contextual Kolmogorov model, quantum representation, interference of probabilities, Born's rule.
@article{TVP_2006_51_3_a4,
     author = {A. Yu. Khrennikov},
     title = {A formula of total probability with interference term and the {Hilbert} space representation of the contextual {Kolmogorov} model},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {518--536},
     year = {2006},
     volume = {51},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_2006_51_3_a4/}
}
TY  - JOUR
AU  - A. Yu. Khrennikov
TI  - A formula of total probability with interference term and the Hilbert space representation of the contextual Kolmogorov model
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 2006
SP  - 518
EP  - 536
VL  - 51
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TVP_2006_51_3_a4/
LA  - ru
ID  - TVP_2006_51_3_a4
ER  - 
%0 Journal Article
%A A. Yu. Khrennikov
%T A formula of total probability with interference term and the Hilbert space representation of the contextual Kolmogorov model
%J Teoriâ veroâtnostej i ee primeneniâ
%D 2006
%P 518-536
%V 51
%N 3
%U http://geodesic.mathdoc.fr/item/TVP_2006_51_3_a4/
%G ru
%F TVP_2006_51_3_a4
A. Yu. Khrennikov. A formula of total probability with interference term and the Hilbert space representation of the contextual Kolmogorov model. Teoriâ veroâtnostej i ee primeneniâ, Tome 51 (2006) no. 3, pp. 518-536. http://geodesic.mathdoc.fr/item/TVP_2006_51_3_a4/

[1] Kolmogoroff A. N., Grundbegriffe der Wahrscheinlichkeitsrechnung, Springer-Verlag, Berlin, 1933, 62 pp. ; Kolmogorov A. N., Osnovnye ponyatiya teorii veroyatnostei, Nauka, M., 1974, 119 pp. | MR | MR

[2] Shiryaev A. N., Veroyatnost, T. 1, MTsNMO, M., 2004, 520 pp.

[3] Kholevo A. S., Statisticheskaya struktura kvantovoi teorii, In-t kompyut. issled., M.–Izhevsk, 2003, 191 pp.

[4] Khrennikov A. Yu., Nekolmogorovskie teorii veroyatnostei i kvantovaya fizika, Fizmatlit, M., 2003, 208 pp. | Zbl

[5] Bulinskii A. V., Khrennikov A. Yu., “Nonclassical total probability formula and quantum interference of probabilities”, Statist. Probab. Lett., 70:1 (2004), 49–58 | DOI | MR

[6] Feinman R., Khibs A., Kvantovaya mekhanika i integraly po traektoriyam, Mir, M., 1968, 382 pp.

[7] Dirak P. A. M., Printsipy kvantovoi mekhaniki, Fizmatgiz, M., 1960, 434 pp. | MR

[8] fon Neiman I., Matematicheskie osnovy kvantovoi mekhaniki, Nauka, M., 1964, 367 pp. | MR

[9] Kolmogorov A. N., “Teoriya veroyatnostei”, Matematika, ee soderzhanie, metody i znachenie, t. 2, Izd-vo AN SSSR, M., 1956, 252–284

[10] Gnedenko B. V., Kurs teorii veroyatnostei, Fizmatgiz, M., 1961, 406 pp. | MR

[11] Rényi A., “On a new axiomatic theory of probability”, Acta Math. Acad. Sci. Hungar., 6 (1955), 285–335 | DOI | MR | Zbl

[12] von Mises R., Mathematical Theory of Probability and Statistics, Academic Press, New York–London, 1964, 694 pp. | MR

[13] Conte E., Todarello O., Federici A., Vitiello F., Lopane M., Khrennikov Yu A., “A preliminar evidence of quantum-like behaviour in measurements of mental states”, Quantum Theory: Reconsideration of Foundations, Math. Model. Phys. Eng. Cogn. Sci., 10, ed. A. Yu. Khrennikov, Växjö Univ. Press, Växjö, 2004, 441–454

[14] Khrennikov A. Yu., “Quantum-like formalism for cognitive measurements”, Biosystems, 70 (2003), 211–233 | DOI

[15] Khrennikov A. Yu., Information Dynamics in Cognitive, Psychological, Social and Anomalous Phenomena, Kluwer, Dordrecht, 2004, 235 pp. | MR

[16] Grib A. A., Khrennikov A. Yu., Starkov K., “Probability amplitude in quantum like games”, Quantum Theory: Reconsideration of Foundations, Math. Model. Phys. Eng. Cogn. Sci., 10, ed. A. Yu. Khrennikov, Växjö Univ. Press, Växjö, 2004, 703–721 | MR

[17] Choustova O. A., “Bohmian mechanics for financial processes”, J. Modern Opt., 51:6–7 (2004), 1111–1112 | MR

[18] Khrennikov A. Yu., Kozyrev S. V., “Noncommutative probability in classical disordered systems”, Phys. A, 326:3–4 (2003), 456–463 | MR | Zbl

[19] Khrennikov A. Yu., “Linear representations of probabilistic transformations induced by context transitions”, J. Phys. A, 34:47 (2001), 9965–9981 | DOI | MR | Zbl

[20] Khrennikov A. Yu., “Contextual viewpoint to quantum statistics”, J. Math. Phys., 44:6 (2003), 2471–2478 | DOI | MR | Zbl

[21] Khrennikov A. Yu., “Interference of probabilities and number field structure of quantum models”, Ann. Phys., 12:10 (2003), 575–585 | DOI | MR | Zbl

[22] Maximov V. M., “Abstract models of probability”, Foundations of Probability and Physics, Quantum Probab. White Noise Anal., 13, World Scientific, River Edge, 2001, 257–273 | MR