Approximation schemes for stochastic differential equations in Hilbert space
Teoriâ veroâtnostej i ee primeneniâ, Tome 51 (2006) no. 3, pp. 476-495
Voir la notice de l'article provenant de la source Math-Net.Ru
For solutions of Itô–Volterra equations and semilinear evolution-type equations we consider approximations via the Milstein scheme, approximations by finite-dimensional processes, and approximations by solutions of stochastic differential equations (SDEs) with bounded coefficients. We prove mean-square convergence for finite-dimensional approximations and establish results on the rate of mean-square convergence for two remaining types of approximation.
Keywords:
stochastic differential equations in Hilbert space, discrete-time approximations, Milstein scheme
Mots-clés : Itô–Volterra type equation.
Mots-clés : Itô–Volterra type equation.
@article{TVP_2006_51_3_a2,
author = {Yu. S. Mishura and G. M. Shevchenko},
title = {Approximation schemes for stochastic differential equations in {Hilbert} space},
journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
pages = {476--495},
publisher = {mathdoc},
volume = {51},
number = {3},
year = {2006},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TVP_2006_51_3_a2/}
}
TY - JOUR AU - Yu. S. Mishura AU - G. M. Shevchenko TI - Approximation schemes for stochastic differential equations in Hilbert space JO - Teoriâ veroâtnostej i ee primeneniâ PY - 2006 SP - 476 EP - 495 VL - 51 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TVP_2006_51_3_a2/ LA - ru ID - TVP_2006_51_3_a2 ER -
Yu. S. Mishura; G. M. Shevchenko. Approximation schemes for stochastic differential equations in Hilbert space. Teoriâ veroâtnostej i ee primeneniâ, Tome 51 (2006) no. 3, pp. 476-495. http://geodesic.mathdoc.fr/item/TVP_2006_51_3_a2/