Approximation schemes for stochastic differential equations in Hilbert space
Teoriâ veroâtnostej i ee primeneniâ, Tome 51 (2006) no. 3, pp. 476-495 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

For solutions of Itô–Volterra equations and semilinear evolution-type equations we consider approximations via the Milstein scheme, approximations by finite-dimensional processes, and approximations by solutions of stochastic differential equations (SDEs) with bounded coefficients. We prove mean-square convergence for finite-dimensional approximations and establish results on the rate of mean-square convergence for two remaining types of approximation.
Keywords: stochastic differential equations in Hilbert space, discrete-time approximations, Milstein scheme
Mots-clés : Itô–Volterra type equation.
@article{TVP_2006_51_3_a2,
     author = {Yu. S. Mishura and G. M. Shevchenko},
     title = {Approximation schemes for stochastic differential equations in {Hilbert} space},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {476--495},
     year = {2006},
     volume = {51},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_2006_51_3_a2/}
}
TY  - JOUR
AU  - Yu. S. Mishura
AU  - G. M. Shevchenko
TI  - Approximation schemes for stochastic differential equations in Hilbert space
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 2006
SP  - 476
EP  - 495
VL  - 51
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TVP_2006_51_3_a2/
LA  - ru
ID  - TVP_2006_51_3_a2
ER  - 
%0 Journal Article
%A Yu. S. Mishura
%A G. M. Shevchenko
%T Approximation schemes for stochastic differential equations in Hilbert space
%J Teoriâ veroâtnostej i ee primeneniâ
%D 2006
%P 476-495
%V 51
%N 3
%U http://geodesic.mathdoc.fr/item/TVP_2006_51_3_a2/
%G ru
%F TVP_2006_51_3_a2
Yu. S. Mishura; G. M. Shevchenko. Approximation schemes for stochastic differential equations in Hilbert space. Teoriâ veroâtnostej i ee primeneniâ, Tome 51 (2006) no. 3, pp. 476-495. http://geodesic.mathdoc.fr/item/TVP_2006_51_3_a2/

[1] Butzer P. L., Berens H., Semi-groups of Operators and Approximation, Springer-Verlag, New York, 1967, 318 pp. | MR | Zbl

[2] El Boukfaoui Y., Erraoui M., “Remarks on the existence and approximation for semilinear stochastic differential equations in Hilbert spaces”, Stochastic Anal. Appl., 20:3 (2002), 495–518 | DOI | MR | Zbl

[3] Clark J. M. C., Cameron R. J., “The maximum rate of convergence of discrete approximations for stochastic differential equations”, Lectures Notes in Control and Inform. Sci., 25, 1980, 162–171 | MR

[4] Du Q., Zhang T., “Numerical approximation of some linear stochastic partial differential equations driven by special additive noises”, SIAM J. Numer. Anal., 40:4 (2002), 1421–1445 | DOI | MR | Zbl

[5] Greksch W., Tudor C., Stochastic Evolution Equations: A Hilbert Space Approach, Akademie-Verlag, 1995, 178 pp. | MR

[6] Gyöngy I., Krylov N., “On the rate of convergence of splitting-up approximations for SPDEs”, Stochastic Inequalities and Applications, Birkhäuser, Basel, 2003, 301–321 | MR | Zbl

[7] Gyöngy I., Krylov N., “On the splitting-up method and stochastic partial differential equations”, Ann. Probab., 31:2 (2003), 564–591 | DOI | MR | Zbl

[8] Gyöngy I., Millet A., “On discretization schemes for stochastic evolution equations”, Potential Anal., 23:2 (2005), 99–134 | DOI | MR | Zbl

[9] Hausenblas E., “Numerical analysis of semilinear stochastic evolution equations in Banach spaces”, J. Comput. Appl. Math., 147:2 (2002), 485–516 | DOI | MR | Zbl

[10] Hausenblas E., “Approximation for semilinear stochastic evolution equations”, Potential Anal., 18:2 (2003), 141–186 | DOI | MR | Zbl

[11] Kolodii A., “On convergence of approximations of Itô–Volterra equations”, Progr. Systems Control Theory, 23 (1997), 157–165 | MR

[12] Kloeden P. E., Platen E., Numerical Solution of Stochastic Differential Equations, Springer-Verlag, Berlin, 1992, 632 pp. | MR

[13] Maruyama G., “Continuous Markov processes and stochastic equations”, Rend. Circ. Mat. Palermo, 4 (1955), 48–90 | DOI | MR | Zbl

[14] Millet A., Sanz-Solé M., “Approximation and support theorem for a wave equation in two space dimensions”, Bernoulli, 6:5 (2000), 887–915 | DOI | MR | Zbl

[15] Pettersson R., Signahl M., “Numerical approximation for a white noise driven SPDE with locally bounded drift”, Potential Anal., 22:4 (2005), 375–393 | DOI | MR | Zbl

[16] Roman L., On numerical solutions of stochastic differential equations, PhD Thesis, University of Minnesota, Minneapolis, 2000

[17] Schurz H., A brief introduction to numerical analysis of (O)SDEs without tears, Report no 1670, IMA, Univ. of Minnesota, Minneapolis, 1999

[18] Shardlow T., “Weak convergence of a numerical method for a stochastic heat equation”, BIT, 43:1 (2003), 179–193 | DOI | MR | Zbl

[19] Wagner W., Platen E., Approximation of Itô integral equations, Report of ZIMM of Academy of Sciences of GDR, Berlin, 1978, February

[20] Yan Y., Error analysis and smoothing properties of discretized deterministic and stochastic parabolic problem, PhD Thesis, Chalmers University of Technology and Göteborg University, Göteborg, 2003

[21] Daletskii Yu. L., Fomin S. V., Mery i differentsialnye uravneniya v beskonechnomernykh prostranstvakh, Nauka, M., 1983, 383 pp. | MR

[22] Kuznetsov D. F., Nekotorye voprosy chislennogo resheniya stokhasticheskikh differentsialnykh uravnenii., Izd-vo Sankt-Peterburgskogo tekhn. un-ta, SPb., 1998 | MR

[23] Milshtein G. N., “Priblizhennoe integrirovanie stokhasticheskikh differentsialnykh uravnenii”, Teoriya veroyatn. i ee primen., 19:3 (1974), 583–588

[24] Milshtein G. N., Chislennoe integrirovanie stokhasticheskikh differentsialnykh uravnenii, Izd-vo Uralskogo un-ta, Sverdlovsk, 1988 | MR

[25] Shevchenko G. M., “Shvidkist zbizhnosti diskretnikh aproksimatsii rozv'yazkiv stokhastichnikh diferentsialnikh rivnyan u gilbertovomu prostori”, Teor. Imovir. matem. stat., 69 (2003), 172–183 | MR