The rate of convergence in probability for spectra of the GUE
Teoriâ veroâtnostej i ee primeneniâ, Tome 51 (2006) no. 3, pp. 618-622
Voir la notice de l'article provenant de la source Math-Net.Ru
It is shown that the Kolmogorov distance between the spectral distribution function of an $n\times n$ matrix from the Gaussian unitary ensemble (GUE) and the distribution function of the semicircle law is of stochastic order $O_p((\log n)/n^{2/3})$.
Mots-clés :
random matrix, Wigner ensemble
Keywords: semicircle law, Gaussian unitary ensemble.
Keywords: semicircle law, Gaussian unitary ensemble.
@article{TVP_2006_51_3_a12,
author = {D. A. Timushev},
title = {The rate of convergence in probability for spectra of the {GUE}},
journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
pages = {618--622},
publisher = {mathdoc},
volume = {51},
number = {3},
year = {2006},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TVP_2006_51_3_a12/}
}
D. A. Timushev. The rate of convergence in probability for spectra of the GUE. Teoriâ veroâtnostej i ee primeneniâ, Tome 51 (2006) no. 3, pp. 618-622. http://geodesic.mathdoc.fr/item/TVP_2006_51_3_a12/