Variance-minimizing hedging in the model with jumps at deterministic moments
Teoriâ veroâtnostej i ee primeneniâ, Tome 51 (2006) no. 3, pp. 608-618 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We consider a model in which the asset price is driven by the Wiener process and, in addition, has random changes at earlier known nonrandom time moments. The explicit form of the variance-minimizing hedging strategy for the European call option is derived. The results are based on the Föllmer–Schweizer decomposition of contingent claims.
Keywords: variance-minimizing hedging, European call option, Föllmer–Schweizer decomposition, model of asset price with jumps, nonrandom jump times, minimal martingale measure.
@article{TVP_2006_51_3_a11,
     author = {V. M. Radchenko},
     title = {Variance-minimizing hedging in the model with jumps at deterministic moments},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {608--618},
     year = {2006},
     volume = {51},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_2006_51_3_a11/}
}
TY  - JOUR
AU  - V. M. Radchenko
TI  - Variance-minimizing hedging in the model with jumps at deterministic moments
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 2006
SP  - 608
EP  - 618
VL  - 51
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TVP_2006_51_3_a11/
LA  - ru
ID  - TVP_2006_51_3_a11
ER  - 
%0 Journal Article
%A V. M. Radchenko
%T Variance-minimizing hedging in the model with jumps at deterministic moments
%J Teoriâ veroâtnostej i ee primeneniâ
%D 2006
%P 608-618
%V 51
%N 3
%U http://geodesic.mathdoc.fr/item/TVP_2006_51_3_a11/
%G ru
%F TVP_2006_51_3_a11
V. M. Radchenko. Variance-minimizing hedging in the model with jumps at deterministic moments. Teoriâ veroâtnostej i ee primeneniâ, Tome 51 (2006) no. 3, pp. 608-618. http://geodesic.mathdoc.fr/item/TVP_2006_51_3_a11/

[1] Merton R., “Option pricing when underlying stock returns are discontinuous”, J. Financial Econom., 3 (1976), 125–144 | DOI | Zbl

[2] Schweizer M., “Approximating random variables by stochastic integrals”, Ann. Probab., 22:3 (1994), 1536–1575 | DOI | MR | Zbl

[3] Pham H., Rheinländer T., Schweizer M., “Mean-variance hedging for continuous processes: New proofs and examples”, Finance Stoch., 2:2 (1998), 173–198 | DOI | MR | Zbl

[4] Hou Ch., Karatzas I., “Least-squares approximation of random variables by stochastic integrals”, Adv. Stud. Pure Math., 41 (2004), 141–166 | MR | Zbl

[5] Ansel J.-P., Stricker C., “Lois de martingale, densités et décomposition de Föllmer–Schweizer”, Ann. Inst. H. Poincaré, 28:3 (1992), 375–392 | MR | Zbl

[6] Mania M., Santacroce M., Tevzadze R., “A semimartingale BSDE related to the minimal entropy martingale measure”, Finance Stoch., 7:3 (2003), 385–402 | DOI | MR | Zbl

[7] Schweizer M., “Option hedging for semimartingales”, Stochastic Process. Appl., 37:2 (1991), 339–363 | DOI | MR | Zbl

[8] Di Mazi Dzh. B., Kabanov Yu. M., Runggalder V. I., “Khedzhirovanie optsionov na aktsiyu pri srednekvadratichnom kriterii i markovskikh volatilnostyakh”, Teoriya veroyatn. i ee primen., 39:1 (1994), 211–222 | MR

[9] Radchenko V. M., “Strategiya naimenshogo riziku dlya protsesiv zi stribkami”, Prikladna statistika. Aktuarna ta finansova matematika, 2003, no. 1–2, 55–68 | Zbl

[10] Monat P., Stricker C., “Fölmer–Schweizer decomposition and mean-variance hedging for general claims”, Ann. Probab., 23:2 (1995), 605–628 | DOI | MR | Zbl

[11] Föllmer H., Schweizer M., “Hedging of contingent claims under incomplete information”, Applied Stochastic Analysis (London, 1989), Stochastics Monogr., 5, eds. M. H. A. Davis and R. J. Elliott, Gordon and Breach, New York, 1991, 389–414 | MR

[12] Shiryaev A. N., Osnovy stokhasticheskoi finansovoi matematiki. T. 2: Teoriya, Fazis, M., 1998, 544 pp.

[13] Musiela M., Rutkowski M., Martingale Methods in Financial Modelling, Springer-Verlag, Berlin, 1997, 512 pp. | MR

[14] Elliott R., Stokhasticheskii analiz i ego prilozheniya, Mir, M., 1986, 352 pp. | MR | Zbl

[15] Schäl M., “On quadratic cost criteria for option hedging”, Math. Oper. Res., 19:1 (1994), 121–131 | DOI | MR | Zbl

[16] Schweizer M., “Variance-optimal hedging in discrete time”, Math. Oper. Res., 20:1 (1995), 1–32 | DOI | MR | Zbl