On probability and moment inequalities for supermartingales and martingales
Teoriâ veroâtnostej i ee primeneniâ, Tome 51 (2006) no. 2, pp. 391-400
Voir la notice de l'article provenant de la source Math-Net.Ru
The probability inequality for $\max_{k\le n}S_k$, where $S_k=\sum_{j=1}^kX_j$, is proved under the assumption that the sequence $S_k$, $k=1,\dots,n$ is a supermartingale. This inequality is stated in terms of probabilities $\mathbf P(X_j>y)$ and conditional variances of random variables $X_j$, $j=1,\dots,n$. As a simple consequence the well-known moment inequality due to Burkholder is deduced. Numerical bounds are given for constants in Burkholder's inequality.
Keywords:
expectation, supermartingale, Burkholder inequality, Bernstein and Bennet–Hoeffding inequalities, Rosenthal inequality, Fuk's inequality, separable Banach space, filtered probability space.
Mots-clés : martingale
Mots-clés : martingale
@article{TVP_2006_51_2_a9,
author = {S. V. Nagaev},
title = {On probability and moment inequalities for supermartingales and martingales},
journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
pages = {391--400},
publisher = {mathdoc},
volume = {51},
number = {2},
year = {2006},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TVP_2006_51_2_a9/}
}
S. V. Nagaev. On probability and moment inequalities for supermartingales and martingales. Teoriâ veroâtnostej i ee primeneniâ, Tome 51 (2006) no. 2, pp. 391-400. http://geodesic.mathdoc.fr/item/TVP_2006_51_2_a9/