On probability and moment inequalities for supermartingales and martingales
Teoriâ veroâtnostej i ee primeneniâ, Tome 51 (2006) no. 2, pp. 391-400 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The probability inequality for $\max_{k\le n}S_k$, where $S_k=\sum_{j=1}^kX_j$, is proved under the assumption that the sequence $S_k$, $k=1,\dots,n$ is a supermartingale. This inequality is stated in terms of probabilities $\mathbf P(X_j>y)$ and conditional variances of random variables $X_j$, $j=1,\dots,n$. As a simple consequence the well-known moment inequality due to Burkholder is deduced. Numerical bounds are given for constants in Burkholder's inequality.
Keywords: expectation, supermartingale, Burkholder inequality, Bernstein and Bennet–Hoeffding inequalities, Rosenthal inequality, Fuk's inequality, separable Banach space, filtered probability space.
Mots-clés : martingale
@article{TVP_2006_51_2_a9,
     author = {S. V. Nagaev},
     title = {On probability and moment inequalities for supermartingales and martingales},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {391--400},
     year = {2006},
     volume = {51},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_2006_51_2_a9/}
}
TY  - JOUR
AU  - S. V. Nagaev
TI  - On probability and moment inequalities for supermartingales and martingales
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 2006
SP  - 391
EP  - 400
VL  - 51
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TVP_2006_51_2_a9/
LA  - ru
ID  - TVP_2006_51_2_a9
ER  - 
%0 Journal Article
%A S. V. Nagaev
%T On probability and moment inequalities for supermartingales and martingales
%J Teoriâ veroâtnostej i ee primeneniâ
%D 2006
%P 391-400
%V 51
%N 2
%U http://geodesic.mathdoc.fr/item/TVP_2006_51_2_a9/
%G ru
%F TVP_2006_51_2_a9
S. V. Nagaev. On probability and moment inequalities for supermartingales and martingales. Teoriâ veroâtnostej i ee primeneniâ, Tome 51 (2006) no. 2, pp. 391-400. http://geodesic.mathdoc.fr/item/TVP_2006_51_2_a9/

[1] Dub Dzh. L., Veroyatnostnye protsessy, IL, M., 1956, 605 pp. | MR

[2] Steiger W., “A best possible Kolmogoroff type inequality for martingales and characteristic property”, Ann. Math. Statist., 40:3 (1969), 764–769 | DOI | MR | Zbl

[3] Fuk D. Kh., Nagaev S. V., “Veroyatnostnye neravenstva dlya summ nezavisimykh sluchainykh velichin”, Teoriya veroyatn. i ee primen., 16:4 (1971), 660–675 | MR | Zbl

[4] Fuk D. Kh., “Nekotorye veroyatnostnye neravenstva dlya martingalov”, Cib. matem. zhurn., 14 (1973), 185–193 | MR | Zbl

[5] Yurinskii V. V., “Pokazatelnye otsenki dlya bolshikh uklonenii”, Teoriya veroyatn. i ee primen., 19:1 (1974), 152–154

[6] Nagaev S. V., Pinelis I. F., “O bolshikh ukloneniyakh dlya summ nezavisimykh sluchainykh velichin so znacheniyami v banakhovom prostranstve”, Tezisy dokladov 2-i Vilnyusskoi konferentsii po teorii veroyatnostei i matematicheskoi statistike, t. 2, Vilnyus, 1977, 66–67

[7] Volodin N. A., Morozova L. N., “Nekotorye otsenki veroyatnostei bolshikh uklonenii dlya martingalov i summ sluchainykh vektorov”, Veroyatnostnye protsessy i matematicheskaya statistika, Fan, Tashkent, 1978, 35–43 | MR

[8] Nagaev S. V., Vakhtel V. I., “Veroyatnostnye neravenstva dlya kriticheskogo protsessa Galtona–Vatsona”, Teoriya veroyatn. i ee primen., 50:2 (2005), 266–291 | MR

[9] Haeusler E., “An exact rate of convergence in the functional central limit theorem for special martingale difference arrays”, Z. Wahrscheinlichkeitstheor. Verw. Geb., 65:4 (1984), 523–534 | DOI | MR | Zbl

[10] Kubilius K., Mémin J., “Inégalité exponentielle pour les martingales locales”, C. R. Acad. Sci. Paris, 319:7 (1994), 733–738 | MR | Zbl

[11] Courbot B., “Rates of convergence in the functional CLT for martingales”, C. R. Acad. Sci. Paris, 328:6 (1999), 509–513 | MR | Zbl

[12] Pinelis I., “Optimum bounds for the distributions of martingales in Banach spaces”, Ann. Probab., 22:4 (1994), 1679–1706 | DOI | MR | Zbl

[13] Dehling H., Utev S. A., “An exponential inequality for martingales”, Siberian Adv. Math., 3:3 (1993), 197–203 | MR | Zbl

[14] Azuma K., “Weighted sums of certain dependent random variables”, Tôhoku Math. J., 19 (1967), 357–367 | DOI | MR | Zbl

[15] Van de Geer S., “Exponential inequalities for martingales' with applications to maximum likelihood estimation for counting process”, Ann. Statist., 23:5 (1995), 1779–1801 | DOI | MR | Zbl

[16] De la Peña V. H., “A general class of exponential inequalities for martingales and ratios”, Ann. Probab., 27:1 (1999), 537–564 | DOI | MR | Zbl

[17] Dzhaparidze K., van Zanten J. H., “On Bernstein-type inequalities for martingales”, Stochastic Process. Appl., 93:1 (2001), 109–117 | DOI | MR | Zbl

[18] Bentkus V., “On Hoeffding's inequalities”, Ann. Probab., 32:2 (2004), 1650–1673 | DOI | MR | Zbl

[19] Lesigne E., Volný D., “Large deviations for martingales”, Stochastic Process. Appl., 96:1 (2001), 143–159 | DOI | MR | Zbl

[20] Nagaev S. V., Pinelis I. F., “Nekotorye neravenstva dlya raspredelenii summ nezavisimykh sluchainykh velichin”, Teoriya veroyatn. i ee primen., 22:2 (1977), 254–263 | MR | Zbl

[21] Nagaev S. V., “Large deviations of sums of independent random variables”, Ann. Probab., 7:5 (1979), 745–789 | DOI | MR | Zbl

[22] Nagaev S. V., “Veroyatnostnye neravenstva dlya summ nezavisimykh sluchainykh velichin so znacheniyami v banakhovom prostranstve”, Trudy In-ta matematiki SO AN SSSR, 1, 1982, 159–167 | MR | Zbl

[23] Nagaev S. V., “Veroyatnostnye neravenstva dlya summ nezavisimykh sluchainykh velichin v banakhovom prostranstve”, Cib. matem. zhurn., 28:4 (1987), 171–184 | MR | Zbl

[24] Nagaev S. V., “O veroyatnostnykh i momentnykh neravenstvakh dlya summ zavisimykh sluchainykh velichin”, Teoriya veroyatn. i ee primen., 45:1 (2000), 194–202 | MR

[25] Nagaev S. V., “On probability and moment inequalities for supermartingales and martingales”, Acta Appl. Math., 79:1–2 (2003), 35–46 | DOI | MR | Zbl

[26] Rosenthal H. P., “On the subspaces of $L^p$ ($p>2$) spanned by sequences of independent random variables”, Israel J. Math., 8 (1970), 273–303 | DOI | MR | Zbl

[27] Burkholder D. L., “Distribution function inequalities for martingales”, Ann. Probab., 1 (1973), 19–42 | DOI | MR | Zbl

[28] Hitczenko P., “Best constants in martingale version of Rosenthal's inequality”, Ann. Probab., 18:4 (1990), 1656–1668 | DOI | MR | Zbl

[29] Hitczenko P., “Upper bounds for the $L_p$-norms of martingales”, Probab. Theory Related Fields, 86:2 (1990), 225–238 | DOI | MR | Zbl

[30] Ibragimov R., Sharakhmetov Sh., “O tochnoi konstante v neravenstve Rozentalya”, Teoriya veroyatn. i ee primen., 42:2 (1997), 341–350 | MR | Zbl

[31] Ibragimov R., Sharakhmetov Sh., “Tochnaya konstanta v neravenstve Rozentalya dlya sluchainykh velichin s nulevym srednim”, Teoriya veroyatn. i ee primen., 46:1 (2001), 134–138 | Zbl

[32] Peshkir G., Shiryaev A. N., “Neravenstva Khinchina i martingalnoe rasshirenie sfery ikh deistviya”, Uspekhi matem. nauk, 50:5 (1995), 3–62 | MR

[33] Johnson W. B., Schechtman G., Zinn J., “Best constants in moment inequalities for linear combinations of independent and exchangeable random variables”, Ann. Probab., 13:1 (1985), 234–253 | DOI | MR | Zbl

[34] Nagaev S. V., “Nekotorye utochneniya veroyatnostnykh i momentnykh neravenstv”, Teoriya veroyatn. i ee primen., 42:4 (1997), 832–838 | MR | Zbl